BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 508858)

  • 1. [Efflux of Ca2+ from fragmented sarcoplasmic reticulum during AMP deamination].
    Kurskiĭ MD; Nechiporenko EIu; Tugaĭ VA; Piskarev VB
    Biokhimiia; 1979 Oct; 44(10):1877-83. PubMed ID: 508858
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Passive Ca2+ fluxes across the membrane of sarcoplasmatic reticulum of skeletal muscles. The effect of calcium channel blockers].
    Diadiusha GP; Tugaĭ VA; Zemlianaia NN; Zakharchenko AN
    Biokhimiia; 1988 May; 53(5):832-7. PubMed ID: 3167125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Membrane potential during Ca++ transport and AMP deamination in vesicles of the sarcoplasmic reticulum].
    Tugaĭ VA; Voinitskiĭ VM; Kurskiĭ MD; Kucherenko NE; Usatiuk PV
    Ukr Biokhim Zh (1978); 1983; 55(1):58-63. PubMed ID: 6829080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Interaction of fluorescent probes with membranes of sarcoplasmic reticulum in AMP deamination].
    Tugĭ VA; Kurskiĭ MD; Usatiuk PV
    Ukr Biokhim Zh (1978); 1982; 54(1):61-5. PubMed ID: 7058553
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of luminal calcium on Ca2+ release channel activity of sarcoplasmic reticulum in situ.
    Kurebayashi N; Ogawa Y
    Biophys J; 1998 Apr; 74(4):1795-807. PubMed ID: 9545042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Release of Ca2+ ions from the sarcoplasmic reticulum of skeletal muscle induced by heparin. Relation between the Ca2+ release caused by Ca2+ ions and caffeine].
    Men'shikova EV; Ritov VB; Kozlov IuP
    Biokhimiia; 1986 Oct; 51(10):1696-701. PubMed ID: 2430628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Trans-magnesium dependency of ATP-dependent calcium uptake into sarcoplasmic reticulum of skeletal muscle.
    Morsy FA; Shamoo AE
    Magnesium; 1985; 4(4):182-7. PubMed ID: 2934589
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Ca 2+ outflow from sarcoplasmic reticulum vesicles during changes in membrane potential, Ca2+ concentration and pH].
    Tugaĭ VA; Diadiusha GP; Zakharchenko AN
    Ukr Biokhim Zh (1978); 1990; 62(1):70-5. PubMed ID: 2336728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Changes in the intensity of the fluorescence of potential-sensitive fluorescent probes in the active transport of Ca2+ in the fragmented sarcoplasmic reticulum].
    Usatiuk PV; Tugaĭ VA
    Biofizika; 1985; 30(3):450-4. PubMed ID: 4027274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of calcium fluxes by dimethyl sulfoxide and 2-butoxyethanol in sarcoplasmic reticulum vesicles: a possible mechanism for skeletal muscle relaxation induced by dimethyl sulfoxide.
    Mayahara T; Kamimura T; Tanaka M; Shibanoki S; Tokuyoshi K; Maruyama I; Yamada S
    Physiol Bohemoslov; 1982; 31(4):297-303. PubMed ID: 6215658
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Cause of increase in the efficiency of Ca2+ transport by fragments of sarcoplasmic reticulum from fast skeletal muscles induced by protein kinase].
    Avakian EA; Ritov VB; Kozlov IuP
    Biokhimiia; 1980 Apr; 45(4):601-8. PubMed ID: 6246973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Release of Ca2+ ions from the sarcoplasmic reticulum of skeletal muscles after treatment with caffeine].
    Men'shikova EV; Ritov VB
    Biokhimiia; 1986 Apr; 51(4):603-11. PubMed ID: 2423142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Two novel types of calcium release from skeletal sarcoplasmic reticulum by phosphatidylinositol 4,5-biphosphate.
    Ohizumi Y; Hirata Y; Suzuki A; Kobayashi M
    Can J Physiol Pharmacol; 1999 Apr; 77(4):276-85. PubMed ID: 10535676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pharmacological differentiation between intracellular calcium pump isoforms.
    Engelender S; De Meis L
    Mol Pharmacol; 1996 Nov; 50(5):1243-52. PubMed ID: 8913356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Steady-state calcium accumulation and its reduction by caffeine in sarcoplasmic reticulum from masseter muscle].
    Saito G
    Kanagawa Shigaku; 1989 Jun; 24(1):169-81. PubMed ID: 2562274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of alanine production after L-leucine and AMP deamination in an enzymatic model and in muscle specimens.
    Weicker H; Hägele H
    Int J Sports Med; 1990 May; 11 Suppl 2():S114-21. PubMed ID: 2361778
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-dependent oscillations in the calcium content of cardiac sarcoplasmic reticulum vesicles.
    Katz AM; Louis CF; Nash-Adler P; Messineo FC; Shigekawa M
    Adv Myocardiol; 1980; 1():173-7. PubMed ID: 7394331
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides.
    Meissner G; Darling E; Eveleth J
    Biochemistry; 1986 Jan; 25(1):236-44. PubMed ID: 3754147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Purine nucleotides and AMP deamination during maximal and endurance swimming exercise in heart and skeletal muscle of rats.
    Weicker H; Hageloch W; Luo J; Müller D; Werle E; Sehling KM
    Int J Sports Med; 1990 May; 11 Suppl 2():S68-77. PubMed ID: 2361782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Monoamine oxidase type B and the function of Ca2+, Mg2+-dependent adenosine triphosphatase of preparations of sarcoplasmic reticulum vesicles].
    Tat'ianenko LV; Raĭkhman LM; Gorkin VZ
    Biull Eksp Biol Med; 1977 Mar; 83(3):283-4. PubMed ID: 139953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.