These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 5094928)

  • 1. Effects of functional transection of the spinal cord on task performance under varied motivational conditions.
    Hester GA
    Psychophysiology; 1971 Jul; 8(4):451-61. PubMed ID: 5094928
    [No Abstract]   [Full Text] [Related]  

  • 2. Plasticity of spinal cord reflexes after a complete transection in adult rats: relationship to stepping ability.
    Lavrov I; Gerasimenko YP; Ichiyama RM; Courtine G; Zhong H; Roy RR; Edgerton VR
    J Neurophysiol; 2006 Oct; 96(4):1699-710. PubMed ID: 16823028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Respiratory sensations in patients with cervical cord transection.
    Frankel HL; Guz A; Noble M
    Paraplegia; 1971 Nov; 9(3):132-6. PubMed ID: 5129052
    [No Abstract]   [Full Text] [Related]  

  • 4. Suppression of the onset of myelination extends the permissive period for the functional repair of embryonic spinal cord.
    Keirstead HS; Hasan SJ; Muir GD; Steeves JD
    Proc Natl Acad Sci U S A; 1992 Dec; 89(24):11664-8. PubMed ID: 1281541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The state of urethral musculature during the detrusor areflexia after spinal cord transection.
    Downie JW; Awad SA
    Invest Urol; 1979 Jul; 17(1):55-9. PubMed ID: 447488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probable corticospinal tract control of spinal cord plasticity in the rat.
    Chen XY; Wolpaw JR
    J Neurophysiol; 2002 Feb; 87(2):645-52. PubMed ID: 11826033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional recovery and regeneration of descending tracts in rats after spinal cord transection in infancy.
    Wakabayashi Y; Komori H; Kawa-Uchi T; Mochida K; Takahashi M; Qi M; Otake K; Shinomiya K
    Spine (Phila Pa 1976); 2001 Jun; 26(11):1215-22. PubMed ID: 11389386
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reflex reciprocal facilitation of antagonist muscles in spinal cord injury.
    Xia R; Rymer WZ
    Spinal Cord; 2005 Jan; 43(1):14-21. PubMed ID: 15289809
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anorectal function in patients with complete spinal transection before and after sacral posterior rhizotomy.
    Sun WM; MacDonagh R; Forster D; Thomas DG; Smallwood R; Read NW
    Gastroenterology; 1995 Apr; 108(4):990-8. PubMed ID: 7698615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophysiological evaluation of the patient with acute spinal cord injury.
    Grundy BL; Friedman W
    Crit Care Clin; 1987 Jul; 3(3):519-48. PubMed ID: 3332213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in functional properties and 5-HT modulation above and below a spinal transection in lamprey.
    Becker MI; Parker D
    Front Neural Circuits; 2014; 8():148. PubMed ID: 25653594
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mechanism of spinal cord cavitation following spinal cord transection.
    Kao tcc ; chang LW
    J Neurosurg; 1977 Feb; 46(2):197-209. PubMed ID: 833636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histological changes in reptilean spinal cord transection: correlation with functional recovery.
    Srivastava VK; Maheshwari V; Tyagi SP; Ali S
    Indian J Physiol Pharmacol; 1994 Jul; 38(3):189-92. PubMed ID: 7814080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sympathetic skin response in spinal cord injured patients: preliminary report.
    Hanson P; Prévinaire JG; Soler JM; Bouffard-Vercelli M; De Nayer J
    Electromyogr Clin Neurophysiol; 1992; 32(10-11):555-7. PubMed ID: 1446588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of electrically induced muscle contraction on flexion reflex in human spinal cord injury.
    Knikou M; Conway BA
    Spinal Cord; 2005 Nov; 43(11):640-8. PubMed ID: 15968304
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered corticospinal function during movement preparation in humans with spinal cord injury.
    Federico P; Perez MA
    J Physiol; 2017 Jan; 595(1):233-245. PubMed ID: 27485306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-Term and medium-term effects of spinal cord tract transections on soleus H-reflex in freely moving rats.
    Chen XY; Feng-Chen KC; Chen L; Stark DM; Wolpaw JR
    J Neurotrauma; 2001 Mar; 18(3):313-27. PubMed ID: 11284551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Locomotor performance of the rat after neonatal repairing of spinal cord injuries: quantitative assessment and electromyographic study.
    Hase T; Kawaguchi S; Hayashi H; Nishio T; Asada Y; Nakamura T
    J Neurotrauma; 2002 Feb; 19(2):267-77. PubMed ID: 11893027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for a spinal central pattern generator in humans.
    Dimitrijevic MR; Gerasimenko Y; Pinter MM
    Ann N Y Acad Sci; 1998 Nov; 860():360-76. PubMed ID: 9928325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Distribution and latency of muscle responses to transcranial magnetic stimulation of motor cortex after spinal cord injury in humans.
    Calancie B; Alexeeva N; Broton JG; Suys S; Hall A; Klose KJ
    J Neurotrauma; 1999 Jan; 16(1):49-67. PubMed ID: 9989466
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.