These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 5096427)

  • 21. [Methemoglobinemia in an infant due to the transient deficiency of NADH-dependent methemoglobin reductase in erythrocytes].
    Jabłońska-Skwiecińska E; Wdowczyk-Kulicka J
    Pediatr Pol; 1988 Dec; 63(12):788-91. PubMed ID: 3267802
    [No Abstract]   [Full Text] [Related]  

  • 22. NADH-methemoglobin reductase activity: adult versus child.
    Yip L; Spyker DA
    Clin Toxicol (Phila); 2018 Sep; 56(9):866-868. PubMed ID: 29488404
    [No Abstract]   [Full Text] [Related]  

  • 23. [Method of determination of the activity of NAD-N2-dependent methemoglobin reductase in the erythrocytes].
    Derviz GV
    Lab Delo; 1976; (4):220-4. PubMed ID: 66375
    [No Abstract]   [Full Text] [Related]  

  • 24. [Congenital deficiency of NADH dependent methemoglobin reductase in erythrocytes of two children with methemoglobinemia].
    Jabłońska-Skwiecińska E; Ruiner J; Pawełek W
    Pediatr Pol; 1988 Dec; 63(12):783-7. PubMed ID: 3267801
    [No Abstract]   [Full Text] [Related]  

  • 25. [Steady-state dependence of the methemoglobin reduction rate on its concentration in intact human erythrocytes].
    Ataullakhanov FI; Vitvitskiĭ VM; Zhabotinskiĭ AM; Kiiatkin AB; Pichugin AV
    Biokhimiia; 1984 Feb; 49(2):193-7. PubMed ID: 6424728
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [Cyanosis in children caused by inherited methemoglobinemia due to deficiency of NADH-dependent methemoglobin reductase in erythrocytes].
    Jabłońska-Skwiecińska E; Wierzbicka M; Kubicka K
    Pediatr Pol; 1989 Jan; 64(1):53-9. PubMed ID: 2812907
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Congenital methemoglobin-reductase (cytochrome b5 reductase) deficiency associated with mental retardation in a Spanish girl.
    Vives-Corrons JL; Pujades A; Vela E; Corretger JM; Leroux A; Kaplan JC
    Acta Haematol; 1978; 59(6):348-53. PubMed ID: 97893
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Relationship between the pentose phosphate shunt and methemoglobin reductase activity in human erythrocytes: Effect of aging on methemoglobin reductase activity.
    Ioppolo C; Currell DL; Civalleri L; Antonini E
    Experientia; 1979 Aug; 35(8):1112-3. PubMed ID: 38988
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Met-form hemoglobins in long-term stored ACD blood.
    Tomoda A; Tanishima K; Tanimoto K; Yoneyama Y
    Vox Sang; 1980; 38(4):205-9. PubMed ID: 7415067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Exponential decay of cytochrome b5 and cytochrome b5 reductase during senescence of erythrocytes: relation to the increased methemoglobin content.
    Takeshita M; Tamura M; Yubisui T; Yoneyama Y
    J Biochem; 1983 Mar; 93(3):931-4. PubMed ID: 6874674
    [TBL] [Abstract][Full Text] [Related]  

  • 31. New method for determining ferrihemoglobin reductase (NADH-methemoglobin reductase) in erythrocytes.
    Hegesh E; Calmanovici N; Avron M
    J Lab Clin Med; 1968 Aug; 72(2):339-44. PubMed ID: 5671206
    [No Abstract]   [Full Text] [Related]  

  • 32. [Congenital methemoglobinemia caused by the absence of NADH-dependent methemoglobin reductase in the red blood cells].
    Goniewicz J; Jabłońska-Skwiecińska E
    Pol Arch Med Wewn; 1982; 68(1-2):77-80. PubMed ID: 7163011
    [No Abstract]   [Full Text] [Related]  

  • 33. Activity of NADH- and NADPH-dependent methemoglobin reductases in erythrocytes from fetal to adult age. A parallel assessment.
    Vetrella M; Astedt B; Barthelmai W; Neuvians D
    Klin Wochenschr; 1971 Sep; 49(17):972-7. PubMed ID: 4398423
    [No Abstract]   [Full Text] [Related]  

  • 34. Cytosolic and membrane-bound methemoglobin reductases in erythrocytes of the opossum, Didelphis virginiana.
    Bethlenfalvay NC; Waterman MR; Lima JE; Waldrup T
    Comp Biochem Physiol B; 1982; 73(3):591-4. PubMed ID: 7151403
    [No Abstract]   [Full Text] [Related]  

  • 35. Methemoglobin pathophysiology.
    Jaffé ER
    Prog Clin Biol Res; 1981; 51():133-51. PubMed ID: 7022466
    [TBL] [Abstract][Full Text] [Related]  

  • 36. NADH diaphorase: an inherited variant associated with normal methemoglobin reduction.
    Detter JC; Anderson JE; Giblett ER
    Am J Hum Genet; 1970 Jan; 22(1):100-4. PubMed ID: 5411644
    [No Abstract]   [Full Text] [Related]  

  • 37. Erythrocyte NADH-methemoglobin reductase activity in experimental riboflavin deficiency.
    Nicolaisen K; Rogers LE
    Experientia; 1972 Mar; 28(3):263-4. PubMed ID: 4337353
    [No Abstract]   [Full Text] [Related]  

  • 38. Soluble and microsomal forms of NADH-cytochrome beta 5 reductase from human placenta. Similarity with NADH-methemoglobin reductase from human erythrocytes.
    Leroux A; Torlinski L; Kaplan JC
    Biochim Biophys Acta; 1977 Mar; 481(1):50-62. PubMed ID: 402944
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Activity of NADH dependent methemoglobin reductase in erythrocytes of infants].
    Jabłońska-Skwiecińska E; Ciepielewska D
    Pediatr Pol; 1988 Dec; 63(12):761-4. PubMed ID: 3267798
    [No Abstract]   [Full Text] [Related]  

  • 40. Inherited methemoglobinemia (enzyme deficiencies).
    Waller HD
    Humangenetik; 1970; 9(3):217-8. PubMed ID: 4393777
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.