BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 5096513)

  • 21. [The effect of cocarboxylase treatment on erythrocyte transketolase and blood thiamine in patients with end stage renal disease undergoing maintenance hemodialysis].
    Pietrzak I; Czarnecki R; Baczyk K; Młynarczyk M; Kaczmarek M
    Przegl Lek; 2000; 57(7-8):369-73. PubMed ID: 11109306
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transketolase variant enzymes and brain damage.
    Pratt OE; Jeyasingham M; Shaw GK; Thomson AD
    Alcohol Alcohol; 1985; 20(2):223-32. PubMed ID: 4052157
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Strain and near attack conformers in enzymic thiamin catalysis: X-ray crystallographic snapshots of bacterial transketolase in covalent complex with donor ketoses xylulose 5-phosphate and fructose 6-phosphate, and in noncovalent complex with acceptor aldose ribose 5-phosphate.
    Asztalos P; Parthier C; Golbik R; Kleinschmidt M; Hübner G; Weiss MS; Friedemann R; Wille G; Tittmann K
    Biochemistry; 2007 Oct; 46(43):12037-52. PubMed ID: 17914867
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High thiamine diphosphate concentrations in erythrocytes can be achieved in dialysis patients by oral administration of benfontiamine.
    Frank T; Bitsch R; Maiwald J; Stein G
    Eur J Clin Pharmacol; 2000 Jun; 56(3):251-7. PubMed ID: 10952481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of chronic alcohol administration on transketolase in the brain and the liver of rats.
    Jung EH; Itokawa Y; Nishino K
    Am J Clin Nutr; 1991 Jan; 53(1):100-5. PubMed ID: 1984333
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [On the relationship between thiamine uptake and the content of thiamine, thiamine pyrophosphate and the transketolase activity in rat organs].
    Wildemann L; Böhm M; Pabst W; Hess B
    Enzymol Biol Clin (Basel); 1969; 10(2):81-112. PubMed ID: 5305321
    [No Abstract]   [Full Text] [Related]  

  • 27. The effect of high-tone external muscle stimulation on symptoms and electrophysiological parameters of uremic peripheral neuropathy.
    Strempska B; Bilinska M; Weyde W; Koszewicz M; Madziarska K; Golebiowski T; Klinger M
    Clin Nephrol; 2013 Jan; 79 Suppl 1():S24-7. PubMed ID: 23249529
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The thiamine-dependent hysteretic behavior of human transketolase: implications for thiamine deficiency.
    Singleton CK; Pekovich SR; McCool BA; Martin PR
    J Nutr; 1995 Feb; 125(2):189-94. PubMed ID: 7861245
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of sedoheptulose-7-phosphate from enzymatically obtained "active glycolic aldehyde" and ribose-5-phosphate with transketolase.
    PROCHOROFF NN; KATTERMANN R; HOLZER H
    Biochem Biophys Res Commun; 1962 Nov; 9():477-81. PubMed ID: 13986286
    [No Abstract]   [Full Text] [Related]  

  • 30. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis.
    Katz J; Rognstad R
    Biochemistry; 1967 Jul; 6(7):2227-47. PubMed ID: 6049456
    [No Abstract]   [Full Text] [Related]  

  • 31. Outbreak of life-threatening thiamine deficiency in infants in Israel caused by a defective soy-based formula.
    Fattal-Valevski A; Kesler A; Sela BA; Nitzan-Kaluski D; Rotstein M; Mesterman R; Toledano-Alhadef H; Stolovitch C; Hoffmann C; Globus O; Eshel G
    Pediatrics; 2005 Feb; 115(2):e233-8. PubMed ID: 15687431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Erythrocyte transketolase inhibition, neuropathy and uremia.
    Henderson LW
    N Engl J Med; 1971 Jun; 284(25):1435-6. PubMed ID: 4325317
    [No Abstract]   [Full Text] [Related]  

  • 33. Inhibition of transketolase by analogues of the coenzyme.
    Kochetov GA; Izotova AE; Meshalkina LE
    Biochem Biophys Res Commun; 1971 Jun; 43(5):1198-203. PubMed ID: 4327957
    [No Abstract]   [Full Text] [Related]  

  • 34. Prevention of a vitamin deficiency by provision of the product synthesized by the coenzyme which contains the vitamin.
    Bennett CD; Jones JH; Nelson J
    Nature; 1968 Dec; 220(5173):1236. PubMed ID: 5725983
    [No Abstract]   [Full Text] [Related]  

  • 35. Pentose phosphate pathway of erythrocytes in uremia.
    Markkanen T; Peltola O; Forsström J; Himanen P
    Acta Haematol; 1972; 48(5):269-77. PubMed ID: 4630658
    [No Abstract]   [Full Text] [Related]  

  • 36. A new approach to erythrocyte transketolase measurement.
    Warnock LG
    J Nutr; 1970 Sep; 100(9):1957-62. PubMed ID: 5456557
    [No Abstract]   [Full Text] [Related]  

  • 37. [Intensity of renewal of thiamine stores and transketolase activity in tissues under various levels of vitamin distribution in the organism].
    Ostrovskiĭ IuM; Gorenshteĭn BI
    Biokhimiia; 1967; 32(6):1115-21. PubMed ID: 5592912
    [No Abstract]   [Full Text] [Related]  

  • 38. [Metabolic effects related to transketolase inhibition].
    Gorbach ZV; Ostrovskiĭ IuM; Maglysh SS; Borodinskiĭ AN
    Vopr Med Khim; 1980; 26(5):608-12. PubMed ID: 7423874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Clinical course of uremic neuropathy in long-term hemodialysis.
    Jurcić D; Bilić A; Schwarz D; Orsanić D; Gabrić M; Spoljarić L; Mihanović M
    Coll Antropol; 2008 Sep; 32(3):771-5. PubMed ID: 18982751
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A thiamine pyrophosphate-glycoaldehyde compound ("active glycolaldehyde") as intermediate in the transketolase reaction.
    HOLZER H; KATTERMANN R; BUSCH D
    Biochem Biophys Res Commun; 1962 Apr; 7():167-72. PubMed ID: 13908635
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.