These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 5097081)

  • 1. On the applicability of a solid-state Bragg-Gray cavity chamber for luminescence degradation dosimetry.
    Ilić-Popović J
    Int J Appl Radiat Isot; 1971 Aug; 22(8):457-61. PubMed ID: 5097081
    [No Abstract]   [Full Text] [Related]  

  • 2. An experimental examination of a general cavity theory using a solid state dosemeter.
    Chan FK; Burlin TE
    Br J Radiol; 1970 Jan; 43(505):54-61. PubMed ID: 5411568
    [No Abstract]   [Full Text] [Related]  

  • 3. On the applicability of a solid state Bragg-Gray cavity chamber to thermoluminiscent dosimetry.
    Nakajima T
    Int J Appl Radiat Isot; 1968 Nov; 19(11):789-94. PubMed ID: 5699474
    [No Abstract]   [Full Text] [Related]  

  • 4. Bragg-Gray theory and ion chamber dosimetry for photon beams.
    Ma CM; Nahum AE
    Phys Med Biol; 1991 Apr; 36(4):413-28. PubMed ID: 1904583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimation and correction of produced light from prompt gamma photons on luminescence imaging of water for proton therapy dosimetry.
    Yabe T; Komori M; Toshito T; Yamaguchi M; Kawachi N; Yamamoto S
    Phys Med Biol; 2018 Feb; 63(4):04NT02. PubMed ID: 29350196
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiotherapy dosimetry using a commercial OSL system.
    Viamonte A; da Rosa LA; Buckley LA; Cherpak A; Cygler JE
    Med Phys; 2008 Apr; 35(4):1261-6. PubMed ID: 18491518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of secondary neutron dose in proton therapy resulting from the use of a tungsten alloy MLC or a brass collimator system.
    Diffenderfer ES; Ainsley CG; Kirk ML; McDonough JE; Maughan RL
    Med Phys; 2011 Nov; 38(11):6248-56. PubMed ID: 22047390
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation into the possible use of thermoluminescent (ZnS:CdS:Ag:Ni) phosphors for radiation dosimetry.
    Elmanharawy MS
    Int J Appl Radiat Isot; 1971 Jan; 22(1):9-15. PubMed ID: 5558790
    [No Abstract]   [Full Text] [Related]  

  • 9. Recent progress in radiophotoluminescence dosimetry.
    Becker K
    Health Phys; 1968 Jan; 14(1):17-32. PubMed ID: 4863826
    [No Abstract]   [Full Text] [Related]  

  • 10. A new highly sensitive low-Z LiF-based OSL phosphor for radiation dosimetry.
    Patil RR; Gaikwad SU; More YK; Kulkarni MS; Bhatt BC; Moharil SV
    Radiat Prot Dosimetry; 2016 Mar; 168(4):465-70. PubMed ID: 26347541
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible Luminescent Nanoswitches Based on Aggregation-Induced Emission Enhancement of Silver Nanoclusters for Luminescence Turn-on Assay of Inorganic Pyrophosphatase Activity.
    Tang C; Feng H; Huang Y; Qian Z
    Anal Chem; 2017 May; 89(9):4994-5002. PubMed ID: 28372359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically stimulated luminescence in vivo dosimetry for radiotherapy: physical characterization and clinical measurements in (60)Co beams.
    Mrčela I; Bokulić T; Izewska J; Budanec M; Fröbe A; Kusić Z
    Phys Med Biol; 2011 Sep; 56(18):6065-82. PubMed ID: 21873767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Determination of absorbed dose in high-energy electron and photon radiation by means of an uncalibrated ionization chamber.
    Klevenhagen SC
    Phys Med Biol; 1991 Feb; 36(2):239-53. PubMed ID: 2008449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ruby as a thermoluminescent radiation dosimeter.
    Philbrick CR; Buckman WG; Underwood N
    Health Phys; 1967 Jul; 13(7):798-801. PubMed ID: 6026825
    [No Abstract]   [Full Text] [Related]  

  • 15. Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy.
    Andersen CE; Nielsen SK; Greilich S; Helt-Hansen J; Lindegaard JC; Tanderup K
    Med Phys; 2009 Mar; 36(3):708-18. PubMed ID: 19378731
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optically stimulated luminescence (OSL) dosimetry in medicine.
    Yukihara EG; McKeever SW
    Phys Med Biol; 2008 Oct; 53(20):R351-79. PubMed ID: 18799833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of optically stimulated luminescent dosimeters, OSLDs, for clinical dosimetric measurements.
    Jursinic PA
    Med Phys; 2007 Dec; 34(12):4594-604. PubMed ID: 18196786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton beam dosimetry: a comparison between a plastic scintillator, ionization chamber and Faraday cup.
    Ghergherehchi M; Afarideh H; Ghannadi M; Mohammadzadeh A; Aslani GR; Boghrati B
    J Radiat Res; 2010; 51(4):423-30. PubMed ID: 20679742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of tray current on the sensitivity of Con Rad 5100 thermoluminescence dosimetry readers.
    Harvey JR; Tobias A; Townsend S
    Health Phys; 1973 Apr; 24(4):437-8. PubMed ID: 4698189
    [No Abstract]   [Full Text] [Related]  

  • 20. STATISTICAL ANALYSIS OF LUNG TRACE ELEMENT LEVELS.
    TIPTON IH; SHAFER JJ
    Arch Environ Health; 1964 Jan; 8():58-67. PubMed ID: 14067552
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.