BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 5098396)

  • 1. Micellar properties of sodium fusidate, a steroid antibiotic structurally resembling the bile salts.
    Carey MC; Small DM
    J Lipid Res; 1971 Sep; 12(5):604-13. PubMed ID: 5098396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultracentrifugal study of effect of sodium chloride on micelle size of fusidate sodium.
    Richard AJ
    J Pharm Sci; 1975 May; 64(5):873-5. PubMed ID: 239200
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface and solution properties of steroid antibiotics: 3-acetoxylfusidic acid, cephalosporin P1 and helvolic acid.
    Carey MC; Montet JC; Small DM
    Biochemistry; 1975 Nov; 14(22):4896-905. PubMed ID: 1182127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic and molecular basis for dissimilar cholesterol-solubilizing capacities by micellar solutions of bile salts: cases of sodium chenodeoxycholate and sodium ursodeoxycholate and their glycine and taurine conjugates.
    Carey MC; Montet JC; Phillips MC; Armstrong MJ; Mazer NA
    Biochemistry; 1981 Jun; 20(12):3637-48. PubMed ID: 7260061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enlargement of taurocholate micelles by added cholesterol and monoolein: self-diffusion measurements.
    Woodford FP
    J Lipid Res; 1969 Sep; 10(5):539-45. PubMed ID: 5808827
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasielastic light-scattering studies of aqueous biliary lipid systems. Mixed micelle formation in bile salt-lecithin solutions.
    Mazer NA; Benedek GB; Carey MC
    Biochemistry; 1980 Feb; 19(4):601-15. PubMed ID: 7356951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-association of unconjugated bilirubin-IX alpha in aqueous solution at pH 10.0 and physical-chemical interactions with bile salt monomers and micelles.
    Carey MC; Koretsky AP
    Biochem J; 1979 Jun; 179(3):675-89. PubMed ID: 38779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities.
    Armstrong MJ; Carey MC
    J Lipid Res; 1982 Jan; 23(1):70-80. PubMed ID: 7057113
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of bile salt structure on self-association in aqueous solutions.
    Roda A; Hofmann AF; Mysels KJ
    J Biol Chem; 1983 May; 258(10):6362-70. PubMed ID: 6853487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Micelle formation of sodium chenodeoxycholate and solubilization into the micelles: comparison with other unconjugated bile salts.
    Ninomiya R; Matsuoka K; Moroi Y
    Biochim Biophys Acta; 2003 Nov; 1634(3):116-25. PubMed ID: 14643799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of total lipid concentration, bile salt:lecithin ratio, and cholesterol content on inter-mixed micellar/vesicular (non-lecithin-associated) bile salt concentrations in model bile.
    Donovan JM; Timofeyeva N; Carey MC
    J Lipid Res; 1991 Sep; 32(9):1501-12. PubMed ID: 1753218
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aggregation behavior of sodium fusidate in aqueous solution.
    Coello A; Meijide F; Rodríguez Núñez E; Vázquez Tato J
    J Pharm Sci; 1994 Jun; 83(6):828-32. PubMed ID: 9120815
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural dimorphism of bile salt/lecithin mixed micelles. A possible regulatory mechanism for cholesterol solubility in bile? X-ray structure analysis.
    Müller K
    Biochemistry; 1981 Jan; 20(2):404-14. PubMed ID: 7470489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cholesterol enhances membrane-damaging properties of model bile by increasing the intervesicular-intermixed micellar concentration of hydrophobic bile salts.
    Narain PK; DeMaria EJ; Heuman DM
    J Surg Res; 1999 Jun; 84(1):112-9. PubMed ID: 10334899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Micellization parameters (number average, aggregation number and critical micellar concentration) of bile salt 3 and 7 ethylidene derivatives: Role of the steroidal skeleton II.
    Poša M; Bjedov S; Škorić D; Sakač M
    Biochim Biophys Acta; 2015 Jul; 1850(7):1345-53. PubMed ID: 25840355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Micellization of conjugated chenodeoxy- and ursodeoxycholates and solubilization of cholesterol into their micelles: comparison with other four conjugated bile salts species.
    Matsuoka K; Suzuki M; Honda C; Endo K; Moroi Y
    Chem Phys Lipids; 2006 Jan; 139(1):1-10. PubMed ID: 16256096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic interference with bile acid demicelleization reduces systemic entry and injury during cholestasis.
    de Oliveira C; Khatua B; El-Kurdi B; Patel K; Mishra V; Navina S; Grim BJ; Gupta S; Belohlavek M; Cherry B; Yarger J; Green MD; Singh VP
    Sci Rep; 2020 May; 10(1):8462. PubMed ID: 32439972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct effects of three bile salts on cholesterol solubilization by oleate-monoolein-bile salt micelles.
    Montet JC; Reynier MO; Montet AM; Gerolami A
    Biochim Biophys Acta; 1979 Nov; 575(2):289-94. PubMed ID: 41588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thermodynamic and molecular determinants of sterol solubilities in bile salt micelles.
    Armstrong MJ; Carey MC
    J Lipid Res; 1987 Oct; 28(10):1144-55. PubMed ID: 3681139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bile salt/lecithin mixed micelles optimized for the solubilization of a poorly soluble steroid molecule using statistical experimental design.
    Magee GA; French J; Gibbon B; Luscombe C
    Drug Dev Ind Pharm; 2003 Apr; 29(4):441-50. PubMed ID: 12737537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.