These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

65 related articles for article (PubMed ID: 5099579)

  • 1. Phospholipases in arterial tissue. VI. The role of growth and age in the development of phosphatide acyl-hydrolase activity in aortic tissue.
    Eisenberg S; Stein O; Stein Y
    Biochim Biophys Acta; 1971 May; 231(3):505-11. PubMed ID: 5099579
    [No Abstract]   [Full Text] [Related]  

  • 2. Phospholipases in arterial tissue. 3. Phosphatide acyl-hydrolase, lysophosphatide acyl-hydrolase and sphingomyelin choline phosphohydrolase in rat and rabbit aorta in different age groups.
    Eisenberg S; Stein Y; Stein O
    Biochim Biophys Acta; 1969 Apr; 176(3):557-69. PubMed ID: 5800044
    [No Abstract]   [Full Text] [Related]  

  • 3. Phospholipases in arterial tissue. IV. The role of phosphatide acyl hydrolase, lysophosphatide acyl hydrolase, and sphingomyelin choline phosphohydrolase in the regulation of phospholipid composition in the normal human aorta with age.
    Eisenberg S; Stein Y; Stein O
    J Clin Invest; 1969 Dec; 48(12):2320-9. PubMed ID: 5355343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phospholipases in arterial tissue. V. Comparison of the activity of phosphatide acyl-hydrolase and sphingomyelin choline phosphohydrolase in aortae of male, female and ovariectomized rats.
    Blatt JM; Eisenberg S; Stein O; Stein Y
    Biochim Biophys Acta; 1971 Mar; 231(2):327-34. PubMed ID: 4324438
    [No Abstract]   [Full Text] [Related]  

  • 5. Phospholipases in arterial tissue. II. Phosphatide acyl-hydrolase and lysophosphatide acyl-hydrolase activity in human and rat arteries.
    Eisenberg S; Stein Y; Stein O
    Biochim Biophys Acta; 1968 Oct; 164(2):205-14. PubMed ID: 5721023
    [No Abstract]   [Full Text] [Related]  

  • 6. Aging of aortic smooth muscle cells in rats and rabbits. A morphologic and biochemical study.
    Stein O; Eisenberg S; Stein Y
    Lab Invest; 1969 Nov; 21(5):386-97. PubMed ID: 4311006
    [No Abstract]   [Full Text] [Related]  

  • 7. Morphologic and biochemical changes in smooth muscle cells of aortas in growth-restricted rats.
    Stein O; Eisenberg S; Stein Y
    Lab Invest; 1971 Aug; 25(2):149-57. PubMed ID: 4326940
    [No Abstract]   [Full Text] [Related]  

  • 8. Thyroid function and plasma phosphate level in rat.
    Perault-Staub AM; Staub JF
    Endocrinology; 1972 Feb; 90(2):558-62. PubMed ID: 5009338
    [No Abstract]   [Full Text] [Related]  

  • 9. Differential effects in the rat thyroidectomy, propylthiouracil and other goitrogens on plasma insulin and thyroid weight.
    Jolin T; Morreale de Escobar G; Escobar del Rey F
    Endocrinology; 1970 Jul; 87(1):99-110. PubMed ID: 4192261
    [No Abstract]   [Full Text] [Related]  

  • 10. The origin of thyroidectomy cells as revealed by high resolution radioautography.
    Stratmann IE; Ezrin C; Sellers EA; Simon GT
    Endocrinology; 1972 Mar; 90(3):728-34. PubMed ID: 4550541
    [No Abstract]   [Full Text] [Related]  

  • 11. Effect of elastase on phospholipase activity in aortic smooth muscle cells.
    Kawaguchi H; Yasuda H
    Biochim Biophys Acta; 1988 Feb; 958(3):450-9. PubMed ID: 3124884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Soluble and membrane bound phospholipases in bovine thyroid gland].
    De Wolf M; Lagrou A; Hilderson HJ; Dierick W
    Arch Int Physiol Biochim; 1973 Dec; 81(5):966. PubMed ID: 4133544
    [No Abstract]   [Full Text] [Related]  

  • 13. Comparison of effects of thyroidectomy with propylthiouracil treatment on renal hypertension in rats.
    FREGLY MJ; BAKER MI; GENNARO JF
    Am J Physiol; 1960 Jan; 198():4-12. PubMed ID: 13824780
    [No Abstract]   [Full Text] [Related]  

  • 14. Different effects of methylmercaptoimidazole and propylthiouracil on thyroidal 131-I release in rats on ClO4.
    Herrera E; de Escobar GM; del Rey FE
    Endocrinology; 1968 Oct; 83(4):671-7. PubMed ID: 4177275
    [No Abstract]   [Full Text] [Related]  

  • 15. Action of target gland hormones on pituitary TSH rebound: validation of the threshold hypothesis of TSH secretion.
    D'Angelo SA
    Endocrinology; 1969 Mar; 84(3):632-40. PubMed ID: 5773160
    [No Abstract]   [Full Text] [Related]  

  • 16. A paradoxical effect of propylthiouracil on rat polymorphonuclear leukocyte metabolism.
    Reed PW; Tepperman J
    Am J Physiol; 1969 Feb; 216(2):231-7. PubMed ID: 5766974
    [No Abstract]   [Full Text] [Related]  

  • 17. Mechanism of the protective effect of propylthiouracil against acetaminophen (Tylenol) toxicity in the rat.
    Linscheer WG; Raheja KL; Cho C; Smith NJ
    Gastroenterology; 1980 Jan; 78(1):100-7. PubMed ID: 7350016
    [No Abstract]   [Full Text] [Related]  

  • 18. Evaluation of the peripheral deiodination of L-thyroxine as an index of its thyrotrophin suppressing effectiveness.
    Mouriz J; Morreale de Escobar G; Escobar del Rey F
    Endocrinology; 1966 Aug; 79(2):248-60. PubMed ID: 5921765
    [No Abstract]   [Full Text] [Related]  

  • 19. The influence of thyroid gland on carbonic anhydrase activity of mouse submandibular gland.
    Pinheiro CE; Tárzia O; Taga EM
    Rev Bras Pesqui Med Biol; 1972; 5(1-2):7-10. PubMed ID: 4375829
    [No Abstract]   [Full Text] [Related]  

  • 20. Effect of sphingomyelinase from Clostridium perfringens on the metabolic activity and phospholipid composition of thyroid slices.
    Macchia V; Pastan I
    Biochim Biophys Acta; 1968 Jul; 152(4):704-12. PubMed ID: 4298230
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.