These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 510241)

  • 1. Effects of environmental oxidant stressors on individuals with a G-6-PD deficiency with particular reference to an animal model.
    Calabrese EJ; Moore G; Brown R
    Environ Health Perspect; 1979 Apr; 29():49-55. PubMed ID: 510241
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An evaluation of the dorset sheep as a predictive animal model for the response of G-6-PD deficient human erythrocytes to a proposed systemic toxic ozone intermediate, methyl oleate hydroperoxide.
    Calabrese EJ; Moore GS; Williams PS
    Vet Hum Toxicol; 1983 Aug; 25(4):241-6. PubMed ID: 6623888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can elevated levels of copper in drinking water precipitate aucte hemolysis in G-6-PD deficient individuals?
    Calabrese EJ; Moore GS
    Med Hypotheses; 1979 Apr; 5(4):493-8. PubMed ID: 459996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does the rodent model adequately predict the effects of ozone induced changes to human erythrocytes?
    Calabrese EJ; Moore GS
    Med Hypotheses; 1980 May; 6(5):505-7. PubMed ID: 7412639
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An evaluation of the dorset sheep as a predictive animal model for the response of glucose-6-phosphate dehydrogenase-deficient human erythrocytes to a proposed systemic toxic ozone intermediate, methyl oleate ozonide.
    Calabrese EJ; Williams PS; Moore GS
    Ecotoxicol Environ Saf; 1983 Aug; 7(4):416-22. PubMed ID: 6617568
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Groups at potentially high risk from chlorine dioxide treated water.
    Moore GS; Calabrese EJ; Ho SC
    J Environ Pathol Toxicol; 1980 Sep; 4(2-3):465-70. PubMed ID: 7462914
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimation of risk of glucose 6-phosphate dehydrogenase-deficient red cells to ozone and nitrogen dioxide.
    Amoruso MA; Ryer J; Easton D; Witz G; Goldstein BD
    J Occup Med; 1986 Jul; 28(7):473-9. PubMed ID: 3734915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of in vivo ozone exposure to Dorset sheep, an animal model with low levels of erythrocyte glucose-6-phosphate dehydrogenase activity.
    Moore GS; Calabrese EJ; Schulz E
    J Environ Pathol Toxicol Oncol; 1984 Jul; 5(4-5):71-8. PubMed ID: 6520741
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of red blood cell glucose-6-phosphate dehydrogenase deficiency on patients with dengue hemorrhagic fever.
    Tanphaichitr VS; Chonlasin R; Suwantol L; Pung-Amritt P; Tachavanich K; Yogsan S; Viprakasit V
    J Med Assoc Thai; 2002 Aug; 85 Suppl 2():S522-9. PubMed ID: 12403228
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical toxicity of red cells.
    Piomelli S
    Environ Health Perspect; 1981 Jun; 39():65-70. PubMed ID: 7016524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Dissimilar glucose-6-phosphate dehydrogenase (G-6-PD) deficiency in the Afars and the Somalis of Djibouti].
    Sidrak W; Fox E; Polycarpe D; Olson JG; Shakib SO; Parra JP; Rodier G
    Med Trop (Mars); 1991; 51(2):211-4. PubMed ID: 1895921
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The effects of chlorine dioxide and sodium chlorite on erythrocytes of A/J and C57L/J mice.
    Moore GS; Calabrese EJ
    J Environ Pathol Toxicol; 1980 Sep; 4(2-3):513-24. PubMed ID: 7462915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Acetylsalicylic acid--induced hemolysis and its mechanism.
    Shahidi NT; Westring DW
    J Clin Invest; 1970 Jul; 49(7):1334-40. PubMed ID: 5432368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effects of a new non-steroid anti-inflammatory agent (Voltaren) on blood platelets and erythrocytes with (G-6-PD) enzyme deficiency. Preliminary notes].
    Palmas S; Sana A; Onorato D
    Reumatismo; 1977; 29(2-3):180-3. PubMed ID: 616965
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of in vivo ozone exposure to dorset sheep, an animal model with low levels of erythrocyte glucose-6-phosphate dehydrogenase activity.
    Moore GS; Calabrese EJ; Schulz E
    Bull Environ Contam Toxicol; 1981 Feb; 26(2):273-80. PubMed ID: 7248553
    [No Abstract]   [Full Text] [Related]  

  • 16. Ozone induced hematological changes in mouse strains with differential levels of erythrocyte G-6-PD activity and vitamin E status.
    Calabrese EJ; Moore GS; Grinberg-Funes R
    J Environ Pathol Toxicol Oncol; 1985; 6(2):283-91. PubMed ID: 4078696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of methyl oleate ozonide, a possible ozone intermediate, on normal and G-6-PD deficient erythrocytes.
    Calabrese EJ; Moore GS; Williams P
    Bull Environ Contam Toxicol; 1982 Oct; 29(4):498-504. PubMed ID: 7171860
    [No Abstract]   [Full Text] [Related]  

  • 18. Alterations in normal and G-6-PD deficient human erythrocytes of various ages after exposure to metabolites of hemolytic drugs.
    Fraser IM; Tilton BE; Vesell ES
    Pharmacology; 1971; 5(3):173-87. PubMed ID: 5119006
    [No Abstract]   [Full Text] [Related]  

  • 19. Estimation of risk of glucose 6-phosphate dehydrogenase deficient red cells to ozone and nitrogen dioxide.
    Amoruso MM
    Res Rep Health Eff Inst; 1985; (1):23-43. PubMed ID: 3916973
    [No Abstract]   [Full Text] [Related]  

  • 20. [Proceedings: Behavior of the ratio between normal and deficient red blood cells in Sardinian subjects heterozygous for G-6-PD deficiency during hemolytic crises].
    Fiorelli G; Salerno F; Palomba V; Carandente F
    Quad Sclavo Diagn; 1973 Mar; 9(1):607-14. PubMed ID: 4788731
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.