These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 5102531)

  • 21. The effect of visual experience on the development of stimulus specificity by kitten cortical neurones.
    Pettigrew JD
    J Physiol; 1974 Feb; 237(1):49-74. PubMed ID: 4595665
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [A geometric model of orientation tuning dynamics in visual neurons].
    Saltykov KA; Sharaev GA; Shevelev IA
    Biofizika; 1999; 44(1):83-90. PubMed ID: 10330585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Receptive fields and in-field afferent inhibition of neurones in the cat's lateral cervical nucleus.
    Brown AG; Maxwell DJ; Short AD
    J Physiol; 1989 Jun; 413():119-37. PubMed ID: 2600843
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aberrant visual projections in the Siamese cat.
    Hubel DH; Wiesel TN
    J Physiol; 1971 Oct; 218(1):33-62. PubMed ID: 5130620
    [TBL] [Abstract][Full Text] [Related]  

  • 25. 'Top-down' influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex.
    Bardy C; Huang JY; Wang C; Fitzgibbon T; Dreher B
    Neuroscience; 2009 Jan; 158(2):951-68. PubMed ID: 18976693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Collinearity tolerance of cells in areas 17 and 18 of the cat's visual cortex: relative sensitivity to straight lines and chevrons.
    Hammond P; Andrews DP
    Exp Brain Res; 1978 Mar; 31(3):329-39. PubMed ID: 648601
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Receptive field organization of 'sustained' and 'transient' retinal ganglion cells which subserve different function roles.
    Ikeda H; Wright MJ
    J Physiol; 1972 Dec; 227(3):769-800. PubMed ID: 4654257
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The organization and post-natal development of area 18 of the cat's visual cortex.
    Blakemore C; Price DJ
    J Physiol; 1987 Mar; 384():263-92. PubMed ID: 3309261
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats.
    Berman N; Cynader M
    J Physiol; 1972 Jul; 224(2):363-89. PubMed ID: 5071401
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evidence for "sustained" and "transient" neurones in the cat's visual cortex.
    Ikeda H; Wright MJ
    Vision Res; 1974 Jan; 14(1):133-6. PubMed ID: 4812911
    [No Abstract]   [Full Text] [Related]  

  • 31. Plasticity in the binocular correspondence of striate cortical receptive fields in kittens.
    Dürsteler MR; von der Heydt R
    J Physiol; 1983 Dec; 345():87-105. PubMed ID: 6663515
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Receptive-field properties of neurons in middle temporal visual area (MT) of owl monkeys.
    Felleman DJ; Kaas JH
    J Neurophysiol; 1984 Sep; 52(3):488-513. PubMed ID: 6481441
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of response properties of cells in the cat's visual cortex at high and low luminance levels.
    Ramoa AS; Freeman RD; Macy A
    J Neurophysiol; 1985 Jul; 54(1):61-72. PubMed ID: 4031982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of horizontal-plane environment on the development of binocular receptive fields of cells in cat visual cortex.
    Hänny P; Von Der Heydt R
    J Physiol; 1982 Aug; 329():75-92. PubMed ID: 7143260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatial summation processes in the receptive fields of visually driven neurons of the cat's cortical area 21a.
    Harutiunian-Kozak BA; Sharanbekian AB; Kazarian AL; Grigorian GG; Kozak JA; Sarkisyan GS; Khachvankian DK
    Arch Ital Biol; 2006 Aug; 144(3-4):127-44. PubMed ID: 16977829
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibitory processes underlying the directional specificity of simple, complex and hypercomplex cells in the cat's visual cortex.
    Sillito AM
    J Physiol; 1977 Oct; 271(3):699-720. PubMed ID: 926020
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preferred direction of movement as an element in the organization of cat visual cortex.
    Tolhurst DJ; Dean AF; Thompson ID
    Exp Brain Res; 1981; 44(3):340-2. PubMed ID: 7308348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat. II. The spatial organization of the orientation domain.
    Albus K
    Exp Brain Res; 1975 Dec; 24(2):181-202. PubMed ID: 1218550
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Early post-natal development of neuronal function in the kitten's visual cortex: a laminar analysis.
    Albus K; Wolf W
    J Physiol; 1984 Mar; 348():153-85. PubMed ID: 6716282
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of contrast on spatial frequency tuning of neurones in area 17 of cat's visual cortex.
    Skottun BC; Bradley A; Ramoa AS
    Exp Brain Res; 1986; 63(2):431-5. PubMed ID: 3758260
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.