These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
91 related articles for article (PubMed ID: 510296)
21. Resolving pathways of interaction of mipafox and a sarin analog with human acetylcholinesterase by kinetics, mass spectrometry and molecular modeling approaches. Mangas I; Taylor P; Vilanova E; Estévez J; França TC; Komives E; Radić Z Arch Toxicol; 2016 Mar; 90(3):603-16. PubMed ID: 25743373 [TBL] [Abstract][Full Text] [Related]
22. [Long-term continuous electric stimulation of the phrenic nerve]. Ul'kin SV Anesteziol Reanimatol; 1984; (6):28-32. PubMed ID: 6532256 [No Abstract] [Full Text] [Related]
23. [The effect of acetylcholine on neuromuscular transmission in the fatigued rat diaphragm with blocked acetylcholinesterase]. Kubasov IV; Krivoĭ II Fiziol Zh Im I M Sechenova; 1993 Oct; 79(10):39-45. PubMed ID: 8167666 [TBL] [Abstract][Full Text] [Related]
24. Transmitter-mediated local contracture of the endplate region of the focally innervated mouse diaphragm treated with anticholinesterase. Hong SJ; Chang CC Br J Pharmacol; 1993 Aug; 109(4):1178-85. PubMed ID: 8104646 [TBL] [Abstract][Full Text] [Related]
25. [Histochemical behavior of acetylcholinesterase in the diaphragm and that of unspecific esterase in the hypothalamus, testes and liver of rats in relation to organophosphates]. Hüsken R Z Mikrosk Anat Forsch; 1977; 91(2):347-68. PubMed ID: 566492 [TBL] [Abstract][Full Text] [Related]
26. Electrophysiological and biochemical effects of single and multiple doses of the organophosphate diazinon in the mouse. de Blaquière GE; Waters L; Blain PG; Williams FM Toxicol Appl Pharmacol; 2000 Jul; 166(2):81-91. PubMed ID: 10896849 [TBL] [Abstract][Full Text] [Related]
27. Kinetic interactions of a homologous series of bispyridinium monooximes (HGG oximes) with native and phosphonylated human acetylcholinesterase. Worek F; Bierwisch A; Wille T; Koller M; Thiermann H Toxicol Lett; 2012 Jul; 212(1):29-32. PubMed ID: 22561105 [TBL] [Abstract][Full Text] [Related]
28. Reduced acetylcholine receptor density, morphological remodeling, and butyrylcholinesterase activity can sustain muscle function in acetylcholinesterase knockout mice. Adler M; Manley HA; Purcell AL; Deshpande SS; Hamilton TA; Kan RK; Oyler G; Lockridge O; Duysen EG; Sheridan RE Muscle Nerve; 2004 Sep; 30(3):317-27. PubMed ID: 15318343 [TBL] [Abstract][Full Text] [Related]
29. Kinetic prerequisites of oximes as effective reactivators of organophosphate-inhibited acetylcholinesterase: a theoretical approach. Worek F; Aurbek N; Wille T; Eyer P; Thiermann H J Enzyme Inhib Med Chem; 2011 Jun; 26(3):303-8. PubMed ID: 20807085 [TBL] [Abstract][Full Text] [Related]
30. Nerve stump length-dependent loss of acetycholinesterase activity in endplate regions of rat diaphragm. Ranish NA; Dettbarn WD; Wecker L Brain Res; 1980 Jun; 191(2):379-86. PubMed ID: 6155170 [No Abstract] [Full Text] [Related]
31. Effects of cartap on isolated mouse phrenic nerve diaphragm and its related mechanism. Liao JW; Kang JJ; Liu SH; Jeng CR; Cheng YW; Hu CM; Tsai SF; Wang SC; Pang VF Toxicol Sci; 2000 Jun; 55(2):453-9. PubMed ID: 10828278 [TBL] [Abstract][Full Text] [Related]
32. Impaired neuromuscular transmission during partial inhibition of acetylcholinesterase: the role of stimulus-induced antidromic backfiring in the generation of the decrement-increment phenomenon. Besser R; Vogt T; Gutmann L; Hopf HC; Wessler I Muscle Nerve; 1992 Oct; 15(10):1072-80. PubMed ID: 1328879 [TBL] [Abstract][Full Text] [Related]
33. Study of the Oxime-induced Reactivation of Acetyl- and Butyrylcholinesterase of Human with Inhibition of Organophosphorus Insecticide In Vitro. Kolesnikov AM; Yuidin MA; Nikiforov AS; Ivanov IM; Vengerovich NG; Makacheev AS Bull Exp Biol Med; 2018 Mar; 164(5):624-628. PubMed ID: 29577198 [TBL] [Abstract][Full Text] [Related]
35. Synthesis, in vitro pharmacology, and molecular modeling of very potent tacrine-huperzine A hybrids as acetylcholinesterase inhibitors of potential interest for the treatment of Alzheimer's disease. Camps P; El Achab R; Görbig DM; Morral J; Muñoz-Torrero D; Badia A; Eladi Baños J; Vivas NM; Barril X; Orozco M; Luque FJ J Med Chem; 1999 Aug; 42(17):3227-42. PubMed ID: 10464010 [TBL] [Abstract][Full Text] [Related]
36. Effects of oximes on muscle force and acetylcholinesterase activity in isolated mouse hemidiaphragms exposed to paraoxon. Thiermann H; Eyer P; Worek F; Szinicz L Toxicology; 2005 Oct; 214(3):190-7. PubMed ID: 16040183 [TBL] [Abstract][Full Text] [Related]
37. Release of acetylcholinesterase from rat hemidiaphragm preparations stimulated through the phrenic nerve. Skau KA; Brimijoin S Nature; 1978 Sep; 275(5677):224-6. PubMed ID: 80750 [No Abstract] [Full Text] [Related]
39. A method for measuring nanogram quantities of acetylcholine by pyrolysis-gas chromatography: the demonstration of acetylcholine in effluents from the rat phrenic nerve-diaphragm preparation. Schmidt DE; Szilagyi PI; Alkon DL; Green JP J Pharmacol Exp Ther; 1970 Aug; 174(2):337-45. PubMed ID: 5451368 [No Abstract] [Full Text] [Related]
40. An anti-curare effect of hexamethonium at the mammalian neuromuscular junction. Ferry CB; Marshall AR Br J Pharmacol; 1973 Feb; 47(2):353-62. PubMed ID: 4722048 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]