These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 5104726)

  • 41. Change in radiosensitivity on the development of sea urchin eggs during the early cleavage stage. II. Protection against x-ray irradiation by cysteamine.
    Nakamura I
    J Radiat Res; 1975 Dec; 16(4):203-10. PubMed ID: 1238561
    [No Abstract]   [Full Text] [Related]  

  • 42. Mechanical properties of the protoplasm of the sea urchin egg. II. Fertilized egg.
    Hiramoto Y
    Exp Cell Res; 1969 Aug; 56(2):209-18. PubMed ID: 5387909
    [No Abstract]   [Full Text] [Related]  

  • 43. Radiation-induced mitotic delay in sea urchin eggs treated with puromycin and actinomycin D.
    Rustad RC; Burchill BR
    Radiat Res; 1966 Oct; 29(2):203-10. PubMed ID: 5951096
    [No Abstract]   [Full Text] [Related]  

  • 44. The site of the target region for radiation-induced mitotic delay in cultured mammalian cells.
    Munro TR
    Radiat Res; 1970 Dec; 44(3):747-57. PubMed ID: 5530791
    [No Abstract]   [Full Text] [Related]  

  • 45. Recovery and modification of radiation-induced division delay in developing sea urchin eggs. ANL-7615.
    Failla P
    ANL Rep; 1968 Jul; ():25-32. PubMed ID: 5309933
    [No Abstract]   [Full Text] [Related]  

  • 46. Relationship between nuclear DNA synthesis and centrosome reproduction in sea urchin eggs.
    Sluder G; Lewis K
    J Exp Zool; 1987 Oct; 244(1):89-100. PubMed ID: 3694143
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Intracellular pH shift leads to microtubule assembly and microtubule-mediated motility during sea urchin fertilization: correlations between elevated intracellular pH and microtubule activity and depressed intracellular pH and microtubule disassembly.
    Schatten G; Bestor T; Balczon R; Henson J; Schatten H
    Eur J Cell Biol; 1985 Jan; 36(1):116-27. PubMed ID: 4038941
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Periodical release of heparin-like polysaccharide within cytoplasm during cleavage of sea urchin EGG.
    Kinoshita S
    Exp Cell Res; 1969 Jul; 56(1):39-43. PubMed ID: 5815691
    [No Abstract]   [Full Text] [Related]  

  • 49. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization.
    Schatten H; Simerly C; Maul G; Schatten G
    Gamete Res; 1989 Jul; 23(3):309-22. PubMed ID: 2777170
    [TBL] [Abstract][Full Text] [Related]  

  • 50. BIOCHEMICAL STUDIES OF NUCLEATE AND ANUCLEATED FRAGMENTS ISOLATED FROM SEA-URCHIN EGGS. A COMPARISON BETWEEN FERTILIZATION AND PARTHENOGENETIC ACTIVATION.
    BALTUS E; QUERTIER J; FICQ A; BRACHET J
    Biochim Biophys Acta; 1965 Mar; 95():408-17. PubMed ID: 14342533
    [No Abstract]   [Full Text] [Related]  

  • 51. Motility and centrosomal organization during sea urchin and mouse fertilization.
    Schatten H; Schatten G
    Cell Motil Cytoskeleton; 1986; 6(2):163-75. PubMed ID: 3518956
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Involvement of glutathione in the inhibition of sea urchin egg mitosis by phenyl glyoxal.
    Amy CM; Rebhun LI
    J Cell Physiol; 1979 Jul; 100(1):187-98. PubMed ID: 572830
    [TBL] [Abstract][Full Text] [Related]  

  • 53. ANALYSIS OF X-RAY-INDUCED MITOTIC DELAY IN SEA URCHIN EGGS. UCRL-10979.
    RAO B
    UCRL US At Energy Comm; 1963 Aug; 86():1-62. PubMed ID: 24547119
    [No Abstract]   [Full Text] [Related]  

  • 54. Developmental delay and lethality studies of x-irradiated Tribolium castaneum eggs. ANL-7635.
    Yang TC; Sacher GA
    ANL Rep; 1969 Dec; ():47-8. PubMed ID: 5310831
    [No Abstract]   [Full Text] [Related]  

  • 55. Fluctuation in the intracellular concentration of Na+ and Cl- but not of K+ or Mg2+ at mitosis of the first cell cycle in fertilized sea urchin eggs.
    Cameron IL; Hunter KE; Smith NK
    Cell Biol Int Rep; 1988 Nov; 12(11):951-8. PubMed ID: 3228863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Fertilization 2: Polyspermic Fertilization.
    Mizushima S
    Adv Exp Med Biol; 2017; 1001():105-123. PubMed ID: 28980232
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell cycle changes in water properties in sea urchin eggs.
    Cameron IL; Cook KR; Edwards D; Fullerton GD; Schatten G; Schatten H; Zimmerman AM; Zimmerman S
    J Cell Physiol; 1987 Oct; 133(1):14-24. PubMed ID: 3667701
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Cycling of intracellular pH during cell division of Xenopus embryos is a cytoplasmic activity depending on protein synthesis and phosphorylation.
    Grandin N; Charbonneau M
    J Cell Biol; 1990 Aug; 111(2):523-32. PubMed ID: 2116420
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A major component of the radiation effect: interference with endocellular control of cell proliferation and differentiation.
    Wangenheim KH
    Int J Radiat Biol Relat Stud Phys Chem Med; 1975 Jan; 27(1):7-30. PubMed ID: 1078819
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A cytological study of artificial parthenogenesis in the sea urchin Arbacia punctulata.
    Sachs MI; Anderson E
    J Cell Biol; 1970 Oct; 47(1):140-58. PubMed ID: 4327513
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.