These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 5105364)

  • 1. Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles.
    Jasaitis AA; Kuliene VV; Skulachev VP
    Biochim Biophys Acta; 1971 Apr; 234(1):177-81. PubMed ID: 5105364
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles.
    Harris RA
    Arch Biochem Biophys; 1971 Dec; 147(2):436-45. PubMed ID: 5136095
    [No Abstract]   [Full Text] [Related]  

  • 3. On the nature of the energy-linked guantum yield change in anilino-naphthalene sulphonate fluorescence in submitochondrial particles.
    Barrett-Bee K; Radda GK
    Biochim Biophys Acta; 1972 Apr; 267(1):211-5. PubMed ID: 4336311
    [No Abstract]   [Full Text] [Related]  

  • 4. On the reversibility of the energy-linked transhydrogenase.
    van de Stadt RJ; Nieuwenhuis FJ; van Dam K
    Biochim Biophys Acta; 1971 Apr; 234(1):173-6. PubMed ID: 4397787
    [No Abstract]   [Full Text] [Related]  

  • 5. A study on the mechanism of energy coupling in the redox chain. 2. ATP-supported generation of membrane potential in the respiratory chain-deficient submitochondrial particles.
    Jasaitis AA; Severina II; Skulachev VP; Smirnova SM
    J Bioenerg; 1972 Aug; 3(5):387-97. PubMed ID: 4266293
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction of fluorescent probes with submitochondrial particles during oxidative phosphorylation.
    Datta A; Penefsky HS
    J Biol Chem; 1970 Apr; 245(7):1537-44. PubMed ID: 4245220
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidative phosphorylation in Azotobacter vinelandii. Energy-linked pH changes and fluorescence changes of atebrin and 1-anilinonaphthalene-8-sulphonate.
    Bening GJ; Eilermann LJ
    Biochim Biophys Acta; 1973 Feb; 292(2):402-12. PubMed ID: 4634032
    [No Abstract]   [Full Text] [Related]  

  • 8. Interaction of biguanides with mitochondrial and synthetic membranes.
    Schäfer G; Bojanowski D
    Eur J Biochem; 1972 May; 27(2):364-75. PubMed ID: 5050978
    [No Abstract]   [Full Text] [Related]  

  • 9. [Demonstration of the membrane potential of mitochondria by changes in fluorescence of anilino naphthalene sulfonate].
    Kulene VV; Skulachev VP; Iasaĭtis AA
    Biokhimiia; 1971; 36(3):649-52. PubMed ID: 5132494
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for the occurrence in submitochondrial particles of a dual respiratory chain containing different forms of cytochrome b.
    Norling B; Nelson BD; Nordenbrand K; Ernster L
    Biochim Biophys Acta; 1972 Jul; 275(1):18-32. PubMed ID: 4340268
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion.
    Scott KM; Knight VA; Settlemire CT; Brierley GP
    Biochemistry; 1970 Feb; 9(4):714-24. PubMed ID: 5417392
    [No Abstract]   [Full Text] [Related]  

  • 12. Oligomycin-induced energization of submitochondrial particles.
    Ernster L; Nordenbrand K
    Biochem J; 1970 Feb; 116(4):13P-14P. PubMed ID: 4985118
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy coupling in lysolecithin-treated submitochondrial particles.
    Komai H; Hunter DR; Southard JH; Haworth RA; Green DE
    Biochem Biophys Res Commun; 1976 Apr; 69(3):695-704. PubMed ID: 5087
    [No Abstract]   [Full Text] [Related]  

  • 14. Activation of energy-linked K+ accumulation in isolated heart mitochondria by non-ionic detergents.
    Brierley GP; Jurkowitz M; Scott KM; Hwang KM; Merola AJ
    Biochem Biophys Res Commun; 1971 Apr; 43(1):50-7. PubMed ID: 4252962
    [No Abstract]   [Full Text] [Related]  

  • 15. Ion transport by heart mitochondria. XXI. Differential effects of mercurial reagents on adenosine triphosphatase activity and on adenosine triphosphate-dependent swelling and contraction.
    Brierley GP; Scott KM; Jurkowitz M
    J Biol Chem; 1971 Apr; 246(7):2241-51. PubMed ID: 4252222
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of N,N'-dicyclohexylcarbodiimide and other carbodiimides on electron transfer catalyzed by submitochondrial particles.
    Beyer RE; Brink TW; Crankshaw DL; Kuner JM; Pasternak A
    Biochemistry; 1972 Mar; 11(6):961-9. PubMed ID: 4335291
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy-linked ion translocation in submitochondrial particles. 3. Transport of monovalent cations by submitochondrial particles.
    Cockrell RS
    J Biol Chem; 1973 Oct; 248(19):6828-33. PubMed ID: 4795660
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphate acceptor specificity during oxidative phosphorylation in submitochondrial particles.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):179-90. PubMed ID: 4335833
    [No Abstract]   [Full Text] [Related]  

  • 19. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA
    Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations.
    Brierley GP; Jurkowitz M; Scott KM; Merola AJ
    Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.