BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 5105364)

  • 1. Anilinonaphthalenesulfonate fluorescence changes induced by non-emzymatic generation of membrane potential in mitochondria and submitochondrial particles.
    Jasaitis AA; Kuliene VV; Skulachev VP
    Biochim Biophys Acta; 1971 Apr; 234(1):177-81. PubMed ID: 5105364
    [No Abstract]   [Full Text] [Related]  

  • 2. Studies on the fluorescence and binding of 8-anilino-1-naphthalene sulfonate by submitochondrial particles.
    Harris RA
    Arch Biochem Biophys; 1971 Dec; 147(2):436-45. PubMed ID: 5136095
    [No Abstract]   [Full Text] [Related]  

  • 3. On the nature of the energy-linked guantum yield change in anilino-naphthalene sulphonate fluorescence in submitochondrial particles.
    Barrett-Bee K; Radda GK
    Biochim Biophys Acta; 1972 Apr; 267(1):211-5. PubMed ID: 4336311
    [No Abstract]   [Full Text] [Related]  

  • 4. On the reversibility of the energy-linked transhydrogenase.
    van de Stadt RJ; Nieuwenhuis FJ; van Dam K
    Biochim Biophys Acta; 1971 Apr; 234(1):173-6. PubMed ID: 4397787
    [No Abstract]   [Full Text] [Related]  

  • 5. A study on the mechanism of energy coupling in the redox chain. 2. ATP-supported generation of membrane potential in the respiratory chain-deficient submitochondrial particles.
    Jasaitis AA; Severina II; Skulachev VP; Smirnova SM
    J Bioenerg; 1972 Aug; 3(5):387-97. PubMed ID: 4266293
    [No Abstract]   [Full Text] [Related]  

  • 6. Interaction of fluorescent probes with submitochondrial particles during oxidative phosphorylation.
    Datta A; Penefsky HS
    J Biol Chem; 1970 Apr; 245(7):1537-44. PubMed ID: 4245220
    [No Abstract]   [Full Text] [Related]  

  • 7. Oxidative phosphorylation in Azotobacter vinelandii. Energy-linked pH changes and fluorescence changes of atebrin and 1-anilinonaphthalene-8-sulphonate.
    Bening GJ; Eilermann LJ
    Biochim Biophys Acta; 1973 Feb; 292(2):402-12. PubMed ID: 4634032
    [No Abstract]   [Full Text] [Related]  

  • 8. Interaction of biguanides with mitochondrial and synthetic membranes.
    Schäfer G; Bojanowski D
    Eur J Biochem; 1972 May; 27(2):364-75. PubMed ID: 5050978
    [No Abstract]   [Full Text] [Related]  

  • 9. [Demonstration of the membrane potential of mitochondria by changes in fluorescence of anilino naphthalene sulfonate].
    Kulene VV; Skulachev VP; Iasaĭtis AA
    Biokhimiia; 1971; 36(3):649-52. PubMed ID: 5132494
    [No Abstract]   [Full Text] [Related]  

  • 10. Evidence for the occurrence in submitochondrial particles of a dual respiratory chain containing different forms of cytochrome b.
    Norling B; Nelson BD; Nordenbrand K; Ernster L
    Biochim Biophys Acta; 1972 Jul; 275(1):18-32. PubMed ID: 4340268
    [No Abstract]   [Full Text] [Related]  

  • 11. Differential effects of mercurial reagents on membrane thiols and on the permeability of the heart mitochondrion.
    Scott KM; Knight VA; Settlemire CT; Brierley GP
    Biochemistry; 1970 Feb; 9(4):714-24. PubMed ID: 5417392
    [No Abstract]   [Full Text] [Related]  

  • 12. Oligomycin-induced energization of submitochondrial particles.
    Ernster L; Nordenbrand K
    Biochem J; 1970 Feb; 116(4):13P-14P. PubMed ID: 4985118
    [No Abstract]   [Full Text] [Related]  

  • 13. Energy coupling in lysolecithin-treated submitochondrial particles.
    Komai H; Hunter DR; Southard JH; Haworth RA; Green DE
    Biochem Biophys Res Commun; 1976 Apr; 69(3):695-704. PubMed ID: 5087
    [No Abstract]   [Full Text] [Related]  

  • 14. Activation of energy-linked K+ accumulation in isolated heart mitochondria by non-ionic detergents.
    Brierley GP; Jurkowitz M; Scott KM; Hwang KM; Merola AJ
    Biochem Biophys Res Commun; 1971 Apr; 43(1):50-7. PubMed ID: 4252962
    [No Abstract]   [Full Text] [Related]  

  • 15. Ion transport by heart mitochondria. XXI. Differential effects of mercurial reagents on adenosine triphosphatase activity and on adenosine triphosphate-dependent swelling and contraction.
    Brierley GP; Scott KM; Jurkowitz M
    J Biol Chem; 1971 Apr; 246(7):2241-51. PubMed ID: 4252222
    [No Abstract]   [Full Text] [Related]  

  • 16. Effect of N,N'-dicyclohexylcarbodiimide and other carbodiimides on electron transfer catalyzed by submitochondrial particles.
    Beyer RE; Brink TW; Crankshaw DL; Kuner JM; Pasternak A
    Biochemistry; 1972 Mar; 11(6):961-9. PubMed ID: 4335291
    [No Abstract]   [Full Text] [Related]  

  • 17. Energy-linked ion translocation in submitochondrial particles. 3. Transport of monovalent cations by submitochondrial particles.
    Cockrell RS
    J Biol Chem; 1973 Oct; 248(19):6828-33. PubMed ID: 4795660
    [No Abstract]   [Full Text] [Related]  

  • 18. Phosphate acceptor specificity during oxidative phosphorylation in submitochondrial particles.
    Vallin I; Lundberg P
    Biochim Biophys Acta; 1972 Feb; 256(2):179-90. PubMed ID: 4335833
    [No Abstract]   [Full Text] [Related]  

  • 19. Conversion of biomembrane-produced energy into electric form. I. Submitochondrial particles.
    Grinius LL; Jasaitis AA; Kadziauskas YP; Liberman EA; Skulachev VP; Topali VP; Tsofina LM; Vladimirova MA
    Biochim Biophys Acta; 1970 Aug; 216(1):1-12. PubMed ID: 4395700
    [No Abstract]   [Full Text] [Related]  

  • 20. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations.
    Brierley GP; Jurkowitz M; Scott KM; Merola AJ
    Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.