These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 5106030)

  • 21. The laser-Raman spectroscopic studies on human enamel and precipitated carbonate-containing apatites.
    Nishino M; Yamashita S; Aoba T; Okazaki M; Moriwaki Y
    J Dent Res; 1981 Mar; 60(3):751-5. PubMed ID: 6937510
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparative study of x-ray diffraction and infrared absorption properties and amino-acid analysis of bovine enamel.
    Tamura K; Mori M; Kawakatsu K
    Arch Oral Biol; 1971 Jul; 16(7):801-11. PubMed ID: 5283535
    [No Abstract]   [Full Text] [Related]  

  • 23. Infrared determination of the degree of substitution of hydroxyl by carbonate ions in human dental enamel.
    Elliott JC; Holcomb DW; Young RA
    Calcif Tissue Int; 1985 Jul; 37(4):372-5. PubMed ID: 3930033
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Infrared spectrophotometric analysis of unheated and heated human enamel apatite].
    Okuda A; Yokobari M; Sakae T; Hirai G
    Nichidai Koko Kagaku; 1987 Sep; 13(3):308-16. PubMed ID: 3506130
    [No Abstract]   [Full Text] [Related]  

  • 25. Ex-vivo study of molecular interfaces in calcified tissues.
    Lamure A; Lacabanne C; Harmand MF; Vignoles M; Bonel G
    Connect Tissue Res; 1989; 21(1-4):275-9; discussion 280. PubMed ID: 2605952
    [TBL] [Abstract][Full Text] [Related]  

  • 26. [The amount of carbonate ion in dental apatites in various animal species].
    Avenel P; Chaigneau M
    Actual Odontostomatol (Paris); 1986 Mar; 40(153):165-9. PubMed ID: 3463161
    [No Abstract]   [Full Text] [Related]  

  • 27. Types of "H2O" in human enamel and in precipitated apatites.
    LeGeros RZ; Bonel G; Legros R
    Calcif Tissue Res; 1978 Dec; 26(2):111-8. PubMed ID: 737557
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A comparative study of carbonate determination in human teeth using Raman spectroscopy.
    Spizzirri PG; Cochrane NJ; Prawer S; Reynolds EC
    Caries Res; 2012; 46(4):353-60. PubMed ID: 22614169
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hydrazine-deproteinated bone mineral. Physical and chemical properties.
    Termine JD; Eanes ED; Greenfield DJ; Nylen MU; Harper RA
    Calcif Tissue Res; 1973; 12(1):73-90. PubMed ID: 4701457
    [No Abstract]   [Full Text] [Related]  

  • 30. Investigation of the composition and crystal structure of bone salt by derivatography and infrared spectrophotometry.
    Paulik F; Eröss K; Paulik J; Farkas T; Vizkelety T
    Hoppe Seylers Z Physiol Chem; 1969 Apr; 350(4):418-26. PubMed ID: 5798584
    [No Abstract]   [Full Text] [Related]  

  • 31. Composition of dental enamel.
    Weatherell JA
    Br Med Bull; 1975 May; 31(2):115-9. PubMed ID: 1164600
    [No Abstract]   [Full Text] [Related]  

  • 32. HPO2-4 content in enamel and artificial carious lesions.
    Arends J; Davidson CL
    Calcif Tissue Res; 1975 Jul; 18(1):65-79. PubMed ID: 1148892
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Organic-bound chromium in enamel, dentin, and bone studied by electron spin resonance.
    Doi Y; Aoba T; Okazaki M; Takahashi J; Moriwaki Y
    J Dent Res; 1981 Jun; 60(6):1053-6. PubMed ID: 6262392
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of electron spin resonance in research on mineralized tissues.
    Ostrowski K; Dziedzic-Goclawska A; Stachowicz W; Michalik J
    Clin Orthop Relat Res; 1973; (97):213-24. PubMed ID: 4359521
    [No Abstract]   [Full Text] [Related]  

  • 35. Structural and ultrastructural organization of biological hard and soft tissues. A unified concept.
    Little MF
    Isr J Med Sci; 1971 Mar; 7(3):426-8. PubMed ID: 4998575
    [No Abstract]   [Full Text] [Related]  

  • 36. Evidence of hydroxyl-ion deficiency in bone apatites: an inelastic neutron-scattering study.
    Loong CK; Rey C; Kuhn LT; Combes C; Wu Y; Chen S; Glimcher MJ
    Bone; 2000 Jun; 26(6):599-602. PubMed ID: 10831931
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Benign odontogenic tumors versus histochemically related tissues: preliminary results from mid-infrared and solid-state nuclear magnetic resonance spectroscopy.
    Kolmas J; Prządka R
    Appl Spectrosc; 2014; 68(6):663-71. PubMed ID: 25014722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electron spin resonance of spin-trapped radicals in calcified tissues and their organic constituents.
    Doi Y; Moriwaki Y; Aoba T; Okazaki M; Takahashi J
    J Osaka Univ Dent Sch; 1980 Dec; 20():63-74. PubMed ID: 6264056
    [No Abstract]   [Full Text] [Related]  

  • 39. [Mineralogy of dental enamel in Laitila rural commune].
    Pärkö A
    Suom Hammaslaak Toim; 1970; 66(5):269-74. PubMed ID: 5275910
    [No Abstract]   [Full Text] [Related]  

  • 40. Electron spin resonance of organic free radicals in dental enamel and other calcified tissues.
    Roufosse A; Richelle LJ; Gilliam OR
    Arch Oral Biol; 1976; 21(4):227-32. PubMed ID: 185994
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.