BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 5107074)

  • 1. Hexose monophosphate shunt dehydrogenases during sea urchin development.
    Broyles RH; Strittmatter CF
    Exp Cell Res; 1971 Aug; 67(2):471-4. PubMed ID: 5107074
    [No Abstract]   [Full Text] [Related]  

  • 2. Hexose monophosphate shunt dehydrogenases in the sea urchin and the frog: comparison of some functional properties of the enzymes in vitro.
    Broyles RH; Strittmatter CF
    Comp Biochem Physiol B; 1977; 57(3):249-55. PubMed ID: 318144
    [No Abstract]   [Full Text] [Related]  

  • 3. Control of enzyme synthesis in early sea urchin development: aryl sulfatase activity in normal and hybrid embryos.
    Fedecka-Bruner B; Anderson M; Epel D
    Dev Biol; 1971 Aug; 25(4):655-71. PubMed ID: 5126203
    [No Abstract]   [Full Text] [Related]  

  • 4. Inhibition of glucose 6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase in sea urchin eggs by palymitoyl-coenzyme A and reversal by polyamines.
    Mita M; Yasumasu I
    Arch Biochem Biophys; 1980 Apr; 201(1):322-9. PubMed ID: 7190369
    [No Abstract]   [Full Text] [Related]  

  • 5. Presence of acid phosphatase activity in heavy bodies of sea urchin eggs.
    Katsura S; Inazumi S
    Dev Biol; 1978 Oct; 66(2):480-7. PubMed ID: 568089
    [No Abstract]   [Full Text] [Related]  

  • 6. 6-PHOSPHOGLUCONATE DEHYDROGENASE IN SEA URCHIN EMBRYOS.
    BAECKSTROEM S
    Exp Cell Res; 1963 Dec; 32():566-9. PubMed ID: 14099825
    [No Abstract]   [Full Text] [Related]  

  • 7. The appearance of beta-1,3-glucanase in hatching embryos of the sea urchin, Echinometra vanbrunti.
    Vacquier VD
    Exp Cell Res; 1975 Jun; 93(1):202-6. PubMed ID: 1170080
    [No Abstract]   [Full Text] [Related]  

  • 8. Role of cell interactions in development and differentiation of the sea urchin Paracentrotus lividus. Changes in the activity of some enzymes of DNA biosynthesis after cell dissociation.
    De Petrocellis B; Vittorelli ML
    Exp Cell Res; 1975 Sep; 94(2):392-400. PubMed ID: 1238266
    [No Abstract]   [Full Text] [Related]  

  • 9. Hexose monophosphate shunt enzymes in lung tumors from normal and glucose-6-phosphate-dehydrogenase-deficient subjects.
    Dessì S; Batetta B; Cherchi R; Onnis R; Pisano M; Pani P
    Oncology; 1988; 45(4):287-91. PubMed ID: 3387032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs.
    Swezey RR; Epel D
    Exp Cell Res; 1992 Aug; 201(2):366-72. PubMed ID: 1639134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Citric acid cycle dehydrogenases and hexose monophosphate dehydrogenases in macroglia.
    Blunt MJ
    Proc Aust Assoc Neurol; 1968; 5(1):125-8. PubMed ID: 5709951
    [No Abstract]   [Full Text] [Related]  

  • 12. Genetic and biochemical studies of the hexose monophosphate shunt in Neurospora crassa. II. Characterization of biochemical defects of the morphological mutants colonial 2 and colonial 3.
    Lechner JF; Fuscaldo KE; Bazinet G
    Can J Microbiol; 1971 Jun; 17(6):789-94. PubMed ID: 4397247
    [No Abstract]   [Full Text] [Related]  

  • 13. The appearance of an extracellular arylsulfatase during morphogenesis of the sea urchin Strongylocentrotus purpuratus.
    Rapraeger AC; Epel D
    Dev Biol; 1981 Dec; 88(2):269-78. PubMed ID: 7308576
    [No Abstract]   [Full Text] [Related]  

  • 14. Subcellular localization of DNA polymerase gamma and changes in its activity in sea urchin embryos.
    Shioda M
    Comp Biochem Physiol B; 1988; 91(3):525-30. PubMed ID: 3233928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hexose shunt dehydrogenase activity in leukocytes isolated from bovine milk.
    Ritter C; Conti A; Morse GE
    J Dairy Sci; 1977 Dec; 60(12):1987-90. PubMed ID: 563878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in alkaline deoxyribonuclease activity in sea urchin during embryonic development.
    De Petrocellis B; Parisi E
    Exp Cell Res; 1972 Aug; 73(2):496-500. PubMed ID: 5066250
    [No Abstract]   [Full Text] [Related]  

  • 17. Protein kinase in sea urchin gametes and embryos.
    Lee MY; Iverson RM
    Exp Cell Res; 1972 Nov; 75(1):300-4. PubMed ID: 4344160
    [No Abstract]   [Full Text] [Related]  

  • 18. Changes in transfer RNAs and aminoacyl-tRNA synthetases during sea urchin development.
    Spadafora C; Igo-Kemenes T; Zachau HG
    Biochim Biophys Acta; 1973 Jul; 312(4):674-84. PubMed ID: 4582227
    [No Abstract]   [Full Text] [Related]  

  • 19. Levels of cAMP-dependent protein kinase activity in sea urchin gametes and embryos during the first cell division.
    Lee MY; Iverson RM
    Exp Cell Res; 1975 Nov; 96(1):77-80. PubMed ID: 172355
    [No Abstract]   [Full Text] [Related]  

  • 20. [Processing and some properties of DNA-polymerase alpha from sea urchin embryos].
    Terent'ev LL; Terent'eva NA; Rasskazov VA
    Biokhimiia; 1983; 48(2):224-9. PubMed ID: 6838921
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.