These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 510724)

  • 21. Monovalent nickel in hydrogenase from Chromatium vinosum. Light sensitivity and evidence for direct interaction with hydrogen.
    van der Zwaan JW; Albracht SP; Fontijn RD; Slater EC
    FEBS Lett; 1985 Jan; 179(2):271-7. PubMed ID: 2981705
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox potentials of flavocytochromes c from the phototrophic bacteria, Chromatium vinosum and Chlorobium thiosulfatophilum.
    Meyer TE; Bartsch RG; Caffrey MS; Cusanovich MA
    Arch Biochem Biophys; 1991 May; 287(1):128-34. PubMed ID: 1654798
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Properties of the hydrogenase of Megasphaera elsdenii.
    van Dijk C; Grande HJ; Mayhew SG; Veeger C
    Eur J Biochem; 1980; 107(1):251-61. PubMed ID: 6995113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The nitrogen fixation system of photosynthetic bacteria. II. Chromatium nitrogenase activity linked to photochemically generated assimilatory power.
    Yoch DC; Arnon DI
    Biochim Biophys Acta; 1970 Mar; 197(2):180-4. PubMed ID: 5416108
    [No Abstract]   [Full Text] [Related]  

  • 25. Light-induced electron transport in Chromatium strain D. I. Isolation and characterization of Chromatium chromatophores.
    Cusanovich MA; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):376-96. PubMed ID: 4296024
    [No Abstract]   [Full Text] [Related]  

  • 26. The association of hydrogenase and dithionite reductase activities with the nitrite reductase of Desulfovibrio desulfuricans.
    Steenkamp DJ; Peck HD
    Biochem Biophys Res Commun; 1980 May; 94(1):41-8. PubMed ID: 7387702
    [No Abstract]   [Full Text] [Related]  

  • 27. Binding of cyanide to cytochrome c' from Chromatium vinosum.
    Kassner RJ; Kykta MG; Cusanovich MA
    Biochim Biophys Acta; 1985 Sep; 831(1):155-8. PubMed ID: 2994739
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Superoxide dismutase from an anaerobic photosynthetic bacterium, Chromatium vinosum.
    Kanematsu S; Asada K
    Arch Biochem Biophys; 1978 Jan; 185(2):473-82. PubMed ID: 626504
    [No Abstract]   [Full Text] [Related]  

  • 29. Comparison of the properties of two hydrogenases from the photosynthetic bacterium Chromatium vinosum.
    Serra JL; Llama MJ; Hall DO
    Arch Biochem Biophys; 1984 Oct; 234(1):73-81. PubMed ID: 6385861
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Light-induced electron transport in Chromatium strain D. II. Light-induced absorbance changes in Chromatium chromatophores.
    Cusanovich MA; Bartsch RG; Kamen MD
    Biochim Biophys Acta; 1968 Feb; 153(2):397-417. PubMed ID: 4296025
    [No Abstract]   [Full Text] [Related]  

  • 31. Purification and properties of the membrane-bound hydrogenase from Proteus mirabilis.
    Schoenmaker GS; Oltmann LF; Stouthamer AH
    Biochim Biophys Acta; 1979 Apr; 567(2):511-21. PubMed ID: 221026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structural examination of the nickel site in chromatium vinosum hydrogenase: redox state oscillations and structural changes accompanying reductive activation and CO binding.
    Davidson G; Choudhury SB; Gu Z; Bose K; Roseboom W; Albracht SP; Maroney MJ
    Biochemistry; 2000 Jun; 39(25):7468-79. PubMed ID: 10858296
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ribulose-5-phosphate kinase from Chromatium.
    Hart BA; Gibson J
    Methods Enzymol; 1975; 42():115-9. PubMed ID: 166272
    [No Abstract]   [Full Text] [Related]  

  • 34. Pre-steady-state kinetics of the reactions of [NiFe]-hydrogenase from Chromatium vinosum with H2 and CO.
    Happe RP; Roseboom W; Albracht SP
    Eur J Biochem; 1999 Feb; 259(3):602-8. PubMed ID: 10092843
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Further studies on the subunit structure of Chromatium ribulose-1,5-phosphate carboxylase.
    Takabe T; Akazawa T
    Biochemistry; 1975 Jan; 14(1):46-50. PubMed ID: 234018
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flavocytochrome c of Chromatium vinosum. Some enzymatic properties and subunit structure.
    Fukumori Y; Yamanaka T
    J Biochem; 1979 Jun; 85(6):1405-14. PubMed ID: 222744
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrogenase in N2-fixing cyanobacteria.
    Tel-Or E; Luijk LW; Packer L
    Arch Biochem Biophys; 1978 Jan; 185(1):185-94. PubMed ID: 23725
    [No Abstract]   [Full Text] [Related]  

  • 38. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum.
    Kerfeld CA; Chan C; Hirasawa M; Kleis-SanFrancisco S; Yeates TO; Knaff DB
    Biochemistry; 1996 Jun; 35(24):7812-8. PubMed ID: 8672482
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Infrared-detectable groups sense changes in charge density on the nickel center in hydrogenase from Chromatium vinosum.
    Bagley KA; Duin EC; Roseboom W; Albracht SP; Woodruff WH
    Biochemistry; 1995 Apr; 34(16):5527-35. PubMed ID: 7727413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Further studies on ribulose 1,5-diphosphate carboxylase from Chromatium strain D.
    Akazawa T; Kondo H; Shimazue T; Nishimura M; Sugiyama T
    Biochemistry; 1972 Mar; 11(7):1298-303. PubMed ID: 4622353
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.