These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 511132)

  • 1. Prominent acrocentric chromosome satellites in child patients with mental retardation or psychiatric disorders; no IQ-satellite size correlation.
    Funderburk SJ; Goldenberg I; Klisak I; Sparkes RS; Westlake J
    Hum Genet; 1979; 50(2):179-85. PubMed ID: 511132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prominent satellites in oligophrenic, malformed patients: incidence, frequency of satellite associations and karyotype-phenotype comparisons.
    Varella-Garcia M; Tajara EH
    Acta Anthropogenet; 1982; 6(1):69-84. PubMed ID: 7138650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 13S+. Giant satellites or de novo rearrangement?
    Imaizumi K; Kajii T; Niikawa N
    Hum Genet; 1981; 59(3):266-8. PubMed ID: 7327588
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The mobile nature of acrocentric elements illustrated by three unusual chromosome variants.
    Reddy KS; Sulcova V
    Hum Genet; 1998 Jun; 102(6):653-62. PubMed ID: 9703427
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ag staining of the nucleolus organizer (NO) and its relationship to satellite association.
    de Capoa A; Ferraro M; Menendez F; Mostacci C; Pelliccia F; Rocchi A
    Hum Genet; 1978 Oct; 44(1):71-77. PubMed ID: 81799
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mitotic recombination among acrocentric chromosomes' short arms.
    Guissani U; Facchinetti B; Cassina G; Zuffardi O
    Ann Hum Genet; 1996 Mar; 60(2):91-7. PubMed ID: 8839124
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amplification of satellite III DNA in an unusually large chromosome 14p+ variant.
    Earle E; Dale S; Choo KH
    Hum Genet; 1989 May; 82(2):187-90. PubMed ID: 2722196
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mathematical model for satellite associations of human acrocentric chromosomes.
    Lezhava T; Tsigroshvili Z; Dvalishvili N; Jokhadze T
    Georgian Med News; 2008 Nov; (164):90-9. PubMed ID: 19075353
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Moving satellites and unstable chromosome translocations: clinical and cytogenetic implications.
    Farrell SA; Winsor EJ; Markovic VD
    Am J Med Genet; 1993 Jul; 46(6):715-20. PubMed ID: 8362916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The origin and behavior of two isodicentric bisatellited chromosomes.
    Van Dyke DL; Weiss L; Logan M; Pai GS
    Am J Hum Genet; 1977 May; 29(3):294-300. PubMed ID: 868876
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new case of human Y chromosome with satellites on the long arm.
    Stella M; Rossi R; Bonfante A; Rossi G
    J Genet Hum; 1980 Mar; 28(1):39-45. PubMed ID: 7190602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel combined 15q11.2 duplication and a bisatellited supernumerary marker derived from chromosome 22: molecular characterization of the marker.
    Dutta UR; Vempally S; Ranganath P; Dalal A
    Gene; 2014 Apr; 539(1):162-7. PubMed ID: 24508374
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Sequential staining for G- and C-banding of chromosomes in the analysis of the morphology of the short arms of human acrocentric chromosomes].
    Gurbanov VP; Barkhudarian AS; Malygina NA
    Biull Eksp Biol Med; 1976 Oct; 82(10):1267-9. PubMed ID: 70241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Duplication of the short arm of the X chromosome in mother and daughter.
    Tuck-Muller CM; Martinez JE; Batista DA; Kearns WG; Wertelecki W
    Hum Genet; 1993 May; 91(4):395-400. PubMed ID: 8500796
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of further cytogenetic and molecular investigation of acrocentric variants: justification by presentation of a case [t(8;14)(q24;p11)].
    Hills L; Earle E; Wilson M; Petrovic V; Voullaire LE; Leversha M; Danks DM; Choo KH
    Hum Genet; 1991 Jun; 87(2):173-6. PubMed ID: 2066104
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RHG-band polymorphism of the short arms of human acrocentric chromosomes and relationship of variants to satellite associations.
    Balícek P; Zizka J; Skalská H
    Hum Genet; 1982; 62(3):237-9. PubMed ID: 6963243
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minor chromosome variants in child psychiatric patients.
    Funderburk SJ; Guthrie D; Lind RC; Muller HM; Sparkes RS; Westlake JR
    Am J Med Genet; 1978; 1(3):301-8. PubMed ID: 677169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Instability of Short Arm of Acrocentric Chromosomes: Lesson from Non-Acrocentric Satellited Chromosomes. Report of 24 Unrelated Cases.
    Redaelli S; Conconi D; Villa N; Sala E; Crosti F; Corti C; Catusi I; Garzo M; Romitti L; Martinoli E; Patrizi A; Malgara R; Recalcati MP; Dalprà L; Lavitrano M; Riva P; Roversi G; Bentivegna A
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32413994
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification and characterization of satellite III subfamilies to the acrocentric chromosomes.
    Bandyopadhyay R; McQuillan C; Page SL; Choo KH; Shaffer LG
    Chromosome Res; 2001; 9(3):223-33. PubMed ID: 11330397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intercalar satellites of human acrocentric chromosomes as a cytological manifestation of polymorphism in GC-rich material?
    Balícek P; Zizka J
    Hum Genet; 1980; 54(3):343-7. PubMed ID: 6156886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.