BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 5112033)

  • 1. [Changes in the epithelial cells of mammary gland secretion in the course of pregnancy and period of lactation].
    Shirokinskaia ON; Suetina IA; Khrustaleva GI
    Vopr Okhr Materin Det; 1971 Jun; 16(6):48-51. PubMed ID: 5112033
    [No Abstract]   [Full Text] [Related]  

  • 2. Culture of human mammary epithelial cells: keeping abreast with a new method.
    Buehring GC
    J Natl Cancer Inst; 1972 Nov; 49(5):1433-4. PubMed ID: 4568089
    [No Abstract]   [Full Text] [Related]  

  • 3. Modulation of hepatocyte growth factor and c-met in the rat mammary gland during pregnancy, lactation, and involution.
    Pepper MS; Soriano JV; Menoud PA; Sappino AP; Orci L; Montesano R
    Exp Cell Res; 1995 Jul; 219(1):204-10. PubMed ID: 7628535
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ectopic TGF beta 1 expression in the secretory mammary epithelium induces early senescence of the epithelial stem cell population.
    Kordon EC; McKnight RA; Jhappan C; Hennighausen L; Merlino G; Smith GH
    Dev Biol; 1995 Mar; 168(1):47-61. PubMed ID: 7883078
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Overexpression and forced activation of stat5 in mammary gland of transgenic mice promotes cellular proliferation, enhances differentiation, and delays postlactational apoptosis.
    Iavnilovitch E; Groner B; Barash I
    Mol Cancer Res; 2002 Nov; 1(1):32-47. PubMed ID: 12496367
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Study of the dynamics of the quantitative and qualitative changes in the cellular composition of the milk during the early lactation period].
    Shirokinskaia ON; Suetina IA
    Vopr Okhr Materin Det; 1973 Sep; 18(9):75-9. PubMed ID: 4593541
    [No Abstract]   [Full Text] [Related]  

  • 7. Expression of CSF-I and CSF-I receptor by normal lactating mammary epithelial cells.
    Sapi E; Flick MB; Rodov S; Carter D; Kacinski BM
    J Soc Gynecol Investig; 1998; 5(2):94-101. PubMed ID: 9509388
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Induction of mammary differentiation by mammary-derived growth inhibitor-related gene that interacts with an omega-3 fatty acid on growth inhibition of breast cancer cells.
    Wang M; Liu YE; Ni J; Aygun B; Goldberg ID; Shi YE
    Cancer Res; 2000 Nov; 60(22):6482-7. PubMed ID: 11103817
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ghrelin and cholecystokinin in term and preterm human breast milk.
    Kierson JA; Dimatteo DM; Locke RG; Mackley AB; Spear ML
    Acta Paediatr; 2006 Aug; 95(8):991-5. PubMed ID: 16882575
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abundant human beta-defensin-1 expression in milk and mammary gland epithelium.
    Jia HP; Starner T; Ackermann M; Kirby P; Tack BF; McCray PB
    J Pediatr; 2001 Jan; 138(1):109-12. PubMed ID: 11148522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoradiographic studies on proliferation of epithelial cells in the mammary glands of white mice during lactation.
    Teppa-Szumowska E
    Folia Morphol (Warsz); 1974; 33(2):197-204. PubMed ID: 4546734
    [No Abstract]   [Full Text] [Related]  

  • 12. Regulation of VEGF and VEGF receptor expression in the rodent mammary gland during pregnancy, lactation, and involution.
    Pepper MS; Baetens D; Mandriota SJ; Di Sanza C; Oikemus S; Lane TF; Soriano JV; Montesano R; Iruela-Arispe ML
    Dev Dyn; 2000 Jul; 218(3):507-24. PubMed ID: 10878616
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Results on a pilot study of cultures of human lacteal secretions and benign and malignant breast tumors.
    Hallowes RC; Millis R; Pigott D; Shearer M; Stoker MG; Taylor-Papadimitriou J
    Clin Oncol; 1977 Mar; 3(1):81-90. PubMed ID: 862279
    [No Abstract]   [Full Text] [Related]  

  • 14. Intraepithelial leukocytes in the Myotis myotis mammary gland.
    Jimenez L; Rua C; Muñiz E; Garcia P
    Arch Anat Histol Embryol; 1984; 67():101-9. PubMed ID: 6399828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Origin, concentration and structural features of human mammary gland cells cultured from breast secretions.
    Gaffney EV; Polanowski FP; Blackburn SE; Lambiase JP
    Cell Tissue Res; 1976 Sep; 172(2):269-79. PubMed ID: 991213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional changes in the mammary gland during lactation revealed by single cell sequencing of cells from human milk.
    Twigger AJ; Engelbrecht LK; Bach K; Schultz-Pernice I; Pensa S; Stenning J; Petricca S; Scheel CH; Khaled WT
    Nat Commun; 2022 Jan; 13(1):562. PubMed ID: 35091553
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Relative incidence of mitosis and binucleated cells, nuclear volume and nucleolar rate per nucleus in the mammary gland eipithelium of the mouse during differentiation in the gestational and lactation phase].
    Kriesten K
    Gegenbaurs Morphol Jahrb; 1984; 130(2):307-14. PubMed ID: 6724285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glycosylation-dependent cell adhesion molecule 1 (GlyCAM 1) mucin is expressed by lactating mammary gland epithelial cells and is present in milk.
    Dowbenko D; Kikuta A; Fennie C; Gillett N; Lasky LA
    J Clin Invest; 1993 Aug; 92(2):952-60. PubMed ID: 8349827
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The uniqueness of human milk. Mammary effects.
    Newton M
    Am J Clin Nutr; 1971 Aug; 24(8):987-90. PubMed ID: 4935487
    [No Abstract]   [Full Text] [Related]  

  • 20. Detection and localization of Cripto-1 binding in mouse mammary epithelial cells and in the mouse mammary gland using an immunoglobulin-cripto-1 fusion protein.
    Bianco C; Normanno N; De Luca A; Maiello MR; Wechselberger C; Sun Y; Khan N; Adkins H; Sanicola M; Vonderhaar B; Cohen B; Seno M; Salomon D
    J Cell Physiol; 2002 Jan; 190(1):74-82. PubMed ID: 11807813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.