These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 5113002)

  • 1. The kinetics of selective biological transport. V. Further data on the erythrocyte-monosaccharide transport system.
    Miller DM
    Biophys J; 1971 Nov; 11(11):915-23. PubMed ID: 5113002
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The kinetics of selective biological transport. IV. Assessment of three carrier systems using the erythrocyte-monosaccharide transport data.
    Miller DM
    Biophys J; 1968 Nov; 8(11):1339-52. PubMed ID: 5696216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The kinetic parameters of the monosaccharide transfer system of the human erythrocyte.
    Levine M; Stein WD
    Biochim Biophys Acta; 1966 Sep; 127(1):179-93. PubMed ID: 5970872
    [No Abstract]   [Full Text] [Related]  

  • 4. The kinetics of selective biological transport. I. Determination of transport constants for sugar movements in human erythrocytes.
    Miller DM
    Biophys J; 1965 Jul; 5(4):407-15. PubMed ID: 5861699
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The kinetics of selective biological transport. 3. Erythrocyte-monosaccharide transport data.
    Miller DM
    Biophys J; 1968 Nov; 8(11):1329-38. PubMed ID: 5696215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Properties of an asymmetrical carrier model for the transport of sugars by human erythrocytes].
    Geck P
    Biochim Biophys Acta; 1971 Aug; 241(2):462-72. PubMed ID: 5159793
    [No Abstract]   [Full Text] [Related]  

  • 7. [Relationships between monosaccharide transport and Mg-Na-K-ATP-ase in human erythrocytes and ghosts].
    Müller F; Dettmer D; Hartenstein H
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1968; 90(2):259-64. PubMed ID: 4178876
    [No Abstract]   [Full Text] [Related]  

  • 8. The mechanism of sugar transfer across erythrocyte membranes.
    Stein WD
    Ann N Y Acad Sci; 1972 Jun; 195():412-28. PubMed ID: 4504102
    [No Abstract]   [Full Text] [Related]  

  • 9. The "dimeriser" hypothesis for sugar permeation through red cell membrane: reinvestigation of original evidence.
    LeFevre PG
    Biochim Biophys Acta; 1966 Jul; 120(3):395-405. PubMed ID: 5966541
    [No Abstract]   [Full Text] [Related]  

  • 10. Human erythrocyte sugar transport is incompatible with available carrier models.
    Cloherty EK; Heard KS; Carruthers A
    Biochemistry; 1996 Aug; 35(32):10411-21. PubMed ID: 8756697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [On the linking effect of monosaccharides and ion transport in erythrocytes].
    Müller F
    Folia Haematol Int Mag Klin Morphol Blutforsch; 1965; 83(2):131-7. PubMed ID: 4157984
    [No Abstract]   [Full Text] [Related]  

  • 12. [Kinetic analysis of the carrier mechanism for the sugar transport by the erythrocyte membrane. Mobility of the free and loaded carrier].
    Fenstermacher J; Wilbrandt W
    Helv Physiol Pharmacol Acta; 1966; 24(2):C16-9. PubMed ID: 5973813
    [No Abstract]   [Full Text] [Related]  

  • 13. Two-carrier models for mediated transport. II. Glucose and galactose equilibrium exchange experiments in human erythrocytes as a test for several two-carrier models.
    Eilam Y
    Biochim Biophys Acta; 1975 Sep; 401(3):364-9. PubMed ID: 1182144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of erythrocyte lipid and of glucose and galactose concentration on transport of the sugars across a water-butanol interface.
    Moore TJ; Schlowsky B
    J Lipid Res; 1969 Mar; 10(2):216-9. PubMed ID: 5782359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model for erythrocyte sugar transport based on substrate-conditioned "introversion" of binding sites.
    LeFevre PG
    J Membr Biol; 1973 Jan; 11(1):1-19. PubMed ID: 4705661
    [No Abstract]   [Full Text] [Related]  

  • 16. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane.
    Baker GF; Naftalin RJ
    Biochim Biophys Acta; 1979 Feb; 550(3):474-84. PubMed ID: 420829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of GLUT1-mediated sugar transport by an antiport/uniport switch mechanism.
    Cloherty EK; Diamond DL; Heard KS; Carruthers A
    Biochemistry; 1996 Oct; 35(40):13231-9. PubMed ID: 8855962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of sugar transport in avian erythrocytes.
    Wood RE; Morgan HE
    J Biol Chem; 1969 Mar; 244(6):1451-60. PubMed ID: 5773049
    [No Abstract]   [Full Text] [Related]  

  • 19. A comparison of recent suggestions for the functional organization of red-cell sugar-transport sites based on kinetic observations.
    LeFevre PG
    Ann N Y Acad Sci; 1975 Dec; 264():398-413. PubMed ID: 769644
    [No Abstract]   [Full Text] [Related]  

  • 20. Transport of monosaccharides. I. Asymmetry in the human erythrocyte mechanism.
    Batt ER; Schachter D
    J Clin Invest; 1973 Jul; 52(7):1686-97. PubMed ID: 4718961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.