These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 5113599)
61. Interspecies transformation of Acinetobacter: genetic evidence for a ubiquitous genus. Juni E J Bacteriol; 1972 Nov; 112(2):917-31. PubMed ID: 4563985 [TBL] [Abstract][Full Text] [Related]
62. Role and regulation of the ortho and meta pathways of catechol metabolism in pseudomonads metabolizing naphthalene and salicylate. Barnsley EA J Bacteriol; 1976 Feb; 125(2):404-8. PubMed ID: 1245462 [TBL] [Abstract][Full Text] [Related]
63. Different types of dienelactone hydrolase in 4-fluorobenzoate-utilizing bacteria. Schlömann M; Schmidt E; Knackmuss HJ J Bacteriol; 1990 Sep; 172(9):5112-8. PubMed ID: 2394679 [TBL] [Abstract][Full Text] [Related]
64. Characterisation of a chromosomally encoded catechol 1,2-dioxygenase (E.C. 1.13.11.1) from Alcaligenes eutrophus CH34. Sauret-Ignazi G; Gagnon J; Béguin C; Barrelle M; Markowicz Y; Pelmont J; Toussaint A Arch Microbiol; 1996 Jul; 166(1):42-50. PubMed ID: 8661943 [TBL] [Abstract][Full Text] [Related]
65. Evidence for an isomeric muconolactone isomerase involved in the metabolism of 4-methylmuconolactone by Alcaligenes eutrophus JMP134. Prucha M; Peterseim A; Pieper DH Arch Microbiol; 1997 Jul; 168(1):33-8. PubMed ID: 9211711 [TBL] [Abstract][Full Text] [Related]
66. Aromatic amino acid biosynthesis in Alcaligenes eutrophus H16. II. The isolation and characterization of mutants auxotrophic for phenylalanine and tyrosine. Friedrich B; Schlegel HG Arch Microbiol; 1975 Apr; 103(2):141-9. PubMed ID: 1156090 [TBL] [Abstract][Full Text] [Related]
67. Comparison of the two isofunctional enol-lactone hydrolases from Acinetobacter calcoaceticus. Katagiri M; Wheelis ML J Bacteriol; 1971 May; 106(2):369-74. PubMed ID: 5573730 [TBL] [Abstract][Full Text] [Related]
68. The metabolism of p-fluorophenylacetic acid by a Pseudomonas sp. II. The degradative pathway. Harper DB; Blakley ER Can J Microbiol; 1971 May; 17(5):645-50. PubMed ID: 5087890 [No Abstract] [Full Text] [Related]
69. Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2-dioxygenation of catechol. Dorn E; Knackmuss HJ Biochem J; 1978 Jul; 174(1):85-94. PubMed ID: 697766 [TBL] [Abstract][Full Text] [Related]
70. Flux limitations in the ortho pathway of benzoate degradation of Alcaligenes eutrophus: metabolite overflow and induction of the meta pathway at high substrate concentrations. Ampe F; Lindley ND Microbiology (Reading); 1996 Jul; 142 ( Pt 7)():1807-17. PubMed ID: 8757743 [TBL] [Abstract][Full Text] [Related]
71. Bacterial degradation of 4-hydroxyphenylacetic acid and homoprotocatechuic acid. Sparnins VL; Chapman PJ; Dagley S J Bacteriol; 1974 Oct; 120(1):159-67. PubMed ID: 4420192 [TBL] [Abstract][Full Text] [Related]
72. Benzoate metabolism in Pseudomonas putida(arvilla) mt-2: demonstration of two benzoate pathways. Nakazawa T; Yokota T J Bacteriol; 1973 Jul; 115(1):262-7. PubMed ID: 4717515 [TBL] [Abstract][Full Text] [Related]
73. Pathways for the oxidation of aromatic compounds by Azotobacter. Hardisson C; Sala-Trepat JM; Stanier RY J Gen Microbiol; 1969 Nov; 59(1):1-11. PubMed ID: 4391505 [No Abstract] [Full Text] [Related]
74. Evidence for a new pathway in the bacterial degradation of 4-fluorobenzoate. Oltmanns RH; Müller R; Otto MK; Lingens F Appl Environ Microbiol; 1989 Oct; 55(10):2499-504. PubMed ID: 2604392 [TBL] [Abstract][Full Text] [Related]
75. D-lysine catabolic pathway in Pseudomonas putida: interrelations with L-lysine catabolism. Chang YF; Adams E J Bacteriol; 1974 Feb; 117(2):753-64. PubMed ID: 4359655 [TBL] [Abstract][Full Text] [Related]
76. Metabolic control in Acinetobacter sp. I. Effect of C4 versus C2 and C3 substrates on isocitrate lyase synthesis. Herman NJ; Bell EJ Can J Microbiol; 1970 Aug; 16(8):769-74. PubMed ID: 4921878 [No Abstract] [Full Text] [Related]
77. Chemical structure and biodegradability of halogenate aromatic compounds. Substituent effects on 1,2-dioxygenation of benzoic acid. Reineke W; Knackmuss HJ Biochim Biophys Acta; 1978 Sep; 542(3):412-23. PubMed ID: 687664 [TBL] [Abstract][Full Text] [Related]
78. Quinate metabolism in Pseudomonas aeruginosa. Ingledew WM; Tai CC Can J Microbiol; 1972 Dec; 18(12):1817-24. PubMed ID: 4630966 [No Abstract] [Full Text] [Related]
79. Relationships among enzymes of the beta-ketoadipate pathway. II. Properties of crystalline beta-carboxy-cis,cis-muconate-lactonizing enzyme from Pseudomonas putida. Patel RN; Meagher RB; Ornston LN Biochemistry; 1973 Aug; 12(18):3531-7. PubMed ID: 4199895 [No Abstract] [Full Text] [Related]
80. Catechol dioxygenases from Escherichia coli (MhpB) and Alcaligenes eutrophus (MpcI): sequence analysis and biochemical properties of a third family of extradiol dioxygenases. Spence EL; Kawamukai M; Sanvoisin J; Braven H; Bugg TD J Bacteriol; 1996 Sep; 178(17):5249-56. PubMed ID: 8752345 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]