These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 5114524)

  • 1. De novo synthesis of acetylcholinesterase in guinea pig retina after inhibition by pinacolyl methylphosphonofluoridate.
    Harris LW; Yamamura HI; Fleisher JH
    Biochem Pharmacol; 1971 Oct; 20(10):2927-30. PubMed ID: 5114524
    [No Abstract]   [Full Text] [Related]  

  • 2. Dealkylation as a mechanism for aging of cholinesterase after poisoning with pinacolyl methylphosphonofluoridate.
    Fleisher JH; Harris LW
    Biochem Pharmacol; 1965 May; 14(5):641-50. PubMed ID: 5840724
    [No Abstract]   [Full Text] [Related]  

  • 3. Acute toxicity of organophosphorus compounds in guinea pigs is sex- and age-dependent and cannot be solely accounted for by acetylcholinesterase inhibition.
    Fawcett WP; Aracava Y; Adler M; Pereira EF; Albuquerque EX
    J Pharmacol Exp Ther; 2009 Feb; 328(2):516-24. PubMed ID: 18984651
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ageing and reactivation of acetylcholinesterase inhibited with Soman and its thiocholine-like analogue.
    Bosković B; Maksimović M; Minic D
    Biochem Pharmacol; 1968 Aug; 17(8):1738-41. PubMed ID: 5672830
    [No Abstract]   [Full Text] [Related]  

  • 5. Effects of 2-PAMC1 and toxogonin on retinal and brain acetylcholinesterase inhibited by sarin.
    Harris LW; Fleisher JH; Yamamura HI
    Eur J Pharmacol; 1971; 14(1):38-46. PubMed ID: 5555249
    [No Abstract]   [Full Text] [Related]  

  • 6. The use of carbamates and atropine in the protection of animals against poisoning by 1,2,2-trimethylpropyl methylphosphonofluoridate.
    Berry WK; Davies DR
    Biochem Pharmacol; 1970 Mar; 19(3):927-34. PubMed ID: 5507697
    [No Abstract]   [Full Text] [Related]  

  • 7. Dephosphorylation in vivo of brain acetylcholinesterase inhibited by isopropyl methylphosphonofluoridate (Sarin).
    Fleisher JH; Harris LW; Berkowitz PT
    Biochem Pharmacol; 1970 Feb; 19(2):421-6. PubMed ID: 5507658
    [No Abstract]   [Full Text] [Related]  

  • 8. [Restoration of acetylcholinesterase activity in animals intoxicated with pinacolyl-methylphosphonofluoridate].
    Faff J
    Acta Physiol Pol; 1972; 23(4):685-95. PubMed ID: 5080267
    [No Abstract]   [Full Text] [Related]  

  • 9. Drug actions on the central nervous system as studied by the effects on the electroretinogram.
    Von Bredow J; Bay E; Adams N
    Exp Neurol; 1971 Oct; 33(1):45-52. PubMed ID: 4399174
    [No Abstract]   [Full Text] [Related]  

  • 10. [Inhibition and restitution of acetylcholinesterase at the motor end plate in rat diaphragm following Soman intoxication].
    Fischer G
    Histochemie; 1968; 16(2):144-9. PubMed ID: 5707030
    [No Abstract]   [Full Text] [Related]  

  • 11. The localization of cholinesterase in the retina of the fetal and newborn guinea pig.
    Spira AW
    J Comp Neurol; 1976 Oct; 169(4):393-407. PubMed ID: 977811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dealkylation studies on inhibited acetylcholinesterase.
    Coult DB; Marsh DJ; Read G
    Biochem J; 1966 Mar; 98(3):869-73. PubMed ID: 5911531
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of pyridostigmine and syntostigmine pretreatment on the inhibition of acetylcholinesterases by o-pinacolyl-methylphosphonofluoridate. In vitro experiments with rat tissues.
    Patocka J
    Biomed Biochim Acta; 1989; 48(9):715-20. PubMed ID: 2619740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of oximes on the distribution of 32P in the body of the rat after injection of 32P-sarin.
    Polak RL; Cohen EM
    Biochem Pharmacol; 1970 Mar; 19(3):865-76. PubMed ID: 5507691
    [No Abstract]   [Full Text] [Related]  

  • 15. Malathion inhibition of esterases as a determinant of malathion toxicity.
    Murphy SD
    J Pharmacol Exp Ther; 1967 May; 156(2):352-65. PubMed ID: 6026264
    [No Abstract]   [Full Text] [Related]  

  • 16. Cholinolytics in the treatment of anticholinesterase poisoning. IV. The effectiveness of five binary combinations of cholinolytics with oximes in the treatment of organophosphorus poisoning.
    Coleman IW; Little PE; Patton GE; Bannard RA
    Can J Physiol Pharmacol; 1966 Sep; 44(5):745-64. PubMed ID: 4291244
    [No Abstract]   [Full Text] [Related]  

  • 17. Calibration and validation of a physiologically based model for soman intoxication in the rat, marmoset, guinea pig and pig.
    Chen K; Seng KY
    J Appl Toxicol; 2012 Sep; 32(9):673-86. PubMed ID: 21433037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protection from lethality and behavioral incapacitation resulting from intoxication by soman (pinacolyl methylphosphonofluoridate) and treatment with atropine sulfate and 2-PAM chloride in the guinea pig, cavia porcellus.
    Romano JA; Terry MR; Murrow ML; Mays MZ
    Drug Chem Toxicol; 1991; 14(1-2):21-44. PubMed ID: 1889376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The acute toxicity of dichloroalkyl aryl phosphates in relation to chemical structure.
    Pickering WR; Malone JC
    Biochem Pharmacol; 1967 Jul; 16(7):1183-94. PubMed ID: 6053593
    [No Abstract]   [Full Text] [Related]  

  • 20. Augmentation of atropine resistant spasms in plexus-containing guinea-pig longitudinal muscle by ganglionic action of the acetylcholinesterase inhibitor BW 284C51 (1:5 bis (p-allyl-dimethylammonium phenyl)-pentan-3-one dibromide).
    Ambache N; Zar MA
    Br J Pharmacol; 1971 Aug; 42(4):657P-658P. PubMed ID: 5116052
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.