These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 5114938)

  • 1. Standard free energy maps for the hydrolysis of ATP as a function of pH, pMg and pCa.
    Shikama K
    Arch Biochem Biophys; 1971 Nov; 147(1):311-7. PubMed ID: 5114938
    [No Abstract]   [Full Text] [Related]  

  • 2. Standard free energy maps for the hydrolysis of ATP as a function of pH and metal ion concentration: comparison of metal ions.
    Shikama K; Nakamura KI
    Arch Biochem Biophys; 1973 Aug; 157(2):457-63. PubMed ID: 4730804
    [No Abstract]   [Full Text] [Related]  

  • 3. Thermodynamics of ATP hydrolysis from membrane electrode measurements of metal-ion ATP and ADP complexation.
    Fogt EJ; Rechnitz GA
    Arch Biochem Biophys; 1974 Dec; 165(2):604-14. PubMed ID: 4441094
    [No Abstract]   [Full Text] [Related]  

  • 4. Flip-flop model of energy interconversion by ATP synthetase.
    Repke KR; Schön R
    Acta Biol Med Ger; 1974; 33(1):K27-38. PubMed ID: 4278420
    [No Abstract]   [Full Text] [Related]  

  • 5. Change in the binding of hydrogen ions and magnesium ions in the hydrolysis of ATP.
    Alberty RA
    Biophys Chem; 1998 Feb; 70(2):109-19. PubMed ID: 9540204
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic data for the hydrolysis of adenosine triphosphate as a function of pH, Mg2+ ion concentration, and ionic strength.
    Phillips RC; George P; Rutman RJ
    J Biol Chem; 1969 Jun; 244(12):3330-42. PubMed ID: 5792663
    [No Abstract]   [Full Text] [Related]  

  • 7. Standard Gibbs free energy, enthalpy, and entropy changes as a function of pH and pMg for several reactions involving adenosine phosphates.
    Alberty RA
    J Biol Chem; 1969 Jun; 244(12):3290-302. PubMed ID: 4307313
    [No Abstract]   [Full Text] [Related]  

  • 8. ESTIMATES OF THERMODYNAMIC DATA FOR THE FORMATION OF THE MG2 COMPLEXES OF ATP AND ADP AT ZERO IONIC STRENGTH.
    GEORGE P; PHILLIPS RC; RUTMAN RJ
    Biochemistry; 1963; 2():508-12. PubMed ID: 14069538
    [No Abstract]   [Full Text] [Related]  

  • 9. Quantitative mathematical expressions for accurate in vivo assessment of cytosolic [ADP] and DeltaG of ATP hydrolysis in the human brain and skeletal muscle.
    Iotti S; Frassineti C; Sabatini A; Vacca A; Barbiroli B
    Biochim Biophys Acta; 2005 Jun; 1708(2):164-77. PubMed ID: 15953473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalysis of the dephosphorylation of an ATP-molybdate complex by calcium and magnesium ions.
    Jenkins WT; Patrick JS
    J Inorg Biochem; 1986 Jul; 27(3):163-72. PubMed ID: 3760857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Standard thermodynamic formation properties for the adenosine 5'-triphosphate series.
    Alberty RA; Goldberg RN
    Biochemistry; 1992 Nov; 31(43):10610-5. PubMed ID: 1420176
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic study of the energy storing enzyme-product complex in the hydrolysis of ATP by heavy meromyosin.
    Yamada T; Shimizu H; Suga H
    Biochim Biophys Acta; 1973 Jun; 305(3):642-53. PubMed ID: 4270154
    [No Abstract]   [Full Text] [Related]  

  • 13. The value of G degrees for the hydrolysis of ATP.
    Rosing J; Slater EC
    Biochim Biophys Acta; 1972 May; 267(2):275-90. PubMed ID: 4402900
    [No Abstract]   [Full Text] [Related]  

  • 14. Intermolecular interaction in systems with energy-rich phosphates. I. Stepwise protonation of PO4 3 minus, ADP and ATP salts, IR investigations.
    Hofmann KP; Zundel G
    Z Naturforsch C Biosci; 1974; 29(1):19-28. PubMed ID: 4276380
    [No Abstract]   [Full Text] [Related]  

  • 15. Chemical reaction mechanism for ATP synthesis and hydrolysis by ATP synthetase.
    Repke KR; Dittrich F; Schön R
    Acta Biol Med Ger; 1974; 33(1):K39-47. PubMed ID: 4278734
    [No Abstract]   [Full Text] [Related]  

  • 16. [Inhibition of nonenzymatic ATP hydrolysis by its binding with the cationic detergent micelles].
    Iaguzhinskiĭ LS; Beliaeva OA; Kolesova GM; Iatsimirskiĭ AK
    Biokhimiia; 1977 Apr; 42(4):647-52. PubMed ID: 857921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipation, generalized free energy, and a self-consistent nonequilibrium thermodynamics of chemically driven open subsystems.
    Ge H; Qian H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jun; 87(6):062125. PubMed ID: 23848645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. POTENTIOMETRIC STUDIES OF THE SECONDARY PHOSPHATE IONIZATIONS OF AMP, ADP, AND ATP, AND CALCULATIONS OF THERMODYNAMIC DATA FOR THE HYDROLYSIS REACTIONS.
    PHILLIPS RC; GEORGE P; RUTMAN RJ
    Biochemistry; 1963; 2():501-8. PubMed ID: 14069537
    [No Abstract]   [Full Text] [Related]  

  • 19. Theoretical studies of the ATP hydrolysis mechanism of myosin.
    Okimoto N; Yamanaka K; Ueno J; Hata M; Hoshino T; Tsuda M
    Biophys J; 2001 Nov; 81(5):2786-94. PubMed ID: 11606291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic evaluation of flip-flop mechanism for transport- and ATP-synthesis function of (Na,K)-ATPase.
    Schön R; Dittrich F; Repke KR
    Acta Biol Med Ger; 1974; 33(1):K9-16. PubMed ID: 4278821
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.