These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 511711)

  • 41. Central respiratory carbon dioxide chemosensitivity does not decrease during sleep.
    Parisi RA; Edelman NH; Santiago TV
    Am Rev Respir Dis; 1992 Apr; 145(4 Pt 1):832-6. PubMed ID: 1554210
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transition from acute to chronic hypercapnia in patients with periodic breathing: predictions from a computer model.
    Norman RG; Goldring RM; Clain JM; Oppenheimer BW; Charney AN; Rapoport DM; Berger KI
    J Appl Physiol (1985); 2006 May; 100(5):1733-41. PubMed ID: 16384839
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Correlation between ventilation and brain blood flow during sleep.
    Santiago TV; Guerra E; Neubauer JA; Edelman NH
    J Clin Invest; 1984 Feb; 73(2):497-506. PubMed ID: 6421878
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Acid-base and ventilatory adaptation in conscious dogs during chronic hypercapnia.
    Jennings DB; Davidson JS
    Respir Physiol; 1984 Dec; 58(3):377-93. PubMed ID: 6528112
    [TBL] [Abstract][Full Text] [Related]  

  • 45. DIDS decreases CSF HCO3- and increases breathing in response to CO2 in awake rabbits.
    Nattie EE; Adams JM
    J Appl Physiol (1985); 1988 Jan; 64(1):397-403. PubMed ID: 3128529
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Relationship of extracellular volume and CO2 tension to renal bicarbonate reabsorption.
    Kurtzman NA
    Am J Physiol; 1970 Nov; 219(5):1299-304. PubMed ID: 5473113
    [No Abstract]   [Full Text] [Related]  

  • 47. End-tidal CO2 and tissue pH in the monitoring of acid-base changes: a composite technique for continuous, minimally invasive monitoring.
    Das JB; Joshi ID; Philippart AI
    J Pediatr Surg; 1984 Dec; 19(6):758-63. PubMed ID: 6440969
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Relationship between venoarterial CO2 content difference and venoalveolar PCO2 difference in acute hypercapnia in dogs.
    Mochizuki M; Tazawa H; Niizeki K; Tamura M
    Jpn J Physiol; 1981; 31(3):345-55. PubMed ID: 6795375
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Influence of chronic respiratory acid-base disorders on acute CO2 titration curve.
    Adrogué HJ; Madias NE
    J Appl Physiol (1985); 1985 Apr; 58(4):1231-8. PubMed ID: 3921516
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Negative arterial-mixed expired PC02 gradient during acute and chronic hypercapnia.
    Jennings DB; Chen CC
    J Appl Physiol; 1975 Mar; 38(3):382-8. PubMed ID: 238927
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Arterial PCO2 and pH in man during 3 days' exposure to 2.8 kPa CO2 in the inspired gas.
    Nicolaysen G; Ellingsen I; Owe JO; Myhre K
    Acta Physiol Scand; 1989 Mar; 135(3):399-403. PubMed ID: 2494844
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Ventilatory responses to low levels of CO2 inhalation in the cat.
    Fordyce WE; Knuth SL; Bartlett D
    Respir Physiol; 1984 Jan; 55(1):81-94. PubMed ID: 6424200
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Difference between end-tidal and arterial PCO2 in exercise.
    Jones NL; Robertson DG; Kane JW
    J Appl Physiol Respir Environ Exerc Physiol; 1979 Nov; 47(5):954-60. PubMed ID: 511720
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Ventilatory responses to lung inflation and arterial CO2 in halothane-anesthetized dogs.
    Mitchell GS; Selby BD
    J Appl Physiol (1985); 1988 Apr; 64(4):1433-8. PubMed ID: 3132447
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Hemodynamic adaptation during extracorporeal perfusion and arteriovenous extracorporeal CO2 removal].
    Schmidt S; Hultquist KA; Bindl L; Gorissen-Bosselmann S; Bartlett RH; Krebs D
    Z Geburtshilfe Perinatol; 1990; 194(2):81-4. PubMed ID: 2111614
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Effect of hilar nerve denervation on breathing and arterial PCO2 during CO2 inhalation.
    Flynn C; Forster HV; Pan LG; Bisgard GE
    J Appl Physiol (1985); 1985 Sep; 59(3):807-13. PubMed ID: 3932317
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Ventilatory response to inspired CO2 in normal and carotid body-denervated ponies.
    Klein JP; Forster HV; Bisgard GE; Kaminski RP; Pan LG; Hamilton LH
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Jun; 52(6):1614-22. PubMed ID: 6809719
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The ventilatory response to endogenous CO2 in preterm infants.
    Rigatto H; Kwiatkowski KA; Hasan SU; Cates DB
    Am Rev Respir Dis; 1991 Jan; 143(1):101-4. PubMed ID: 1898842
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Control of ventilation during lung volume changes and permissive hypercapnia in dogs.
    Carl ML; Schelegle ES; Hollstien SB; Green JF
    Am J Respir Crit Care Med; 1998 Sep; 158(3):742-8. PubMed ID: 9730999
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of upper airway carbon dioxide on ventilation and blood gases in the awake pony.
    Orr JA; Fraser DB; Shirer HW; Wagerle LC; DeSoignie RC
    Can J Physiol Pharmacol; 1984 Jul; 62(7):793-7. PubMed ID: 6437649
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.