These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 511711)

  • 61. Analysis of end-tidal and arterial PCO2 gradients using a breathing model.
    Benallal H; Busso T
    Eur J Appl Physiol; 2000 Nov; 83(4 -5):402-8. PubMed ID: 11138582
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Arterial-end tidal PCO2 equilibration in the cat during acute hypercapnia.
    Fordyce WE; Kanter RK
    Respir Physiol; 1988 Aug; 73(2):257-72. PubMed ID: 3138749
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Intrapulmonary CO2 receptor discharge at different levels of venous PCO2.
    Tallman RD; Grodins FS
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Dec; 53(6):1386-91. PubMed ID: 6818210
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Effects on breathing in awake and sleeping goats of focal acidosis in the medullary raphe.
    Hodges MR; Klum L; Leekley T; Brozoski DT; Bastasic J; Davis S; Wenninger JM; Feroah TR; Pan LG; Forster HV
    J Appl Physiol (1985); 2004 May; 96(5):1815-24. PubMed ID: 14672965
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Effect of acute respiratory acidosis on the limits of oxygen extraction during hemorrhage.
    Ward ME
    Anesthesiology; 1996 Oct; 85(4):817-22. PubMed ID: 8873552
    [TBL] [Abstract][Full Text] [Related]  

  • 66. End-tidal partial pressure of CO2 as an estimate of arterial partial pressure of CO2 during various ventilatory regimens in halothane-anesthetized dogs.
    Hightower CE; Kiorpes AL; Butler HC; Fedde MR
    Am J Vet Res; 1980 Apr; 41(4):610-2. PubMed ID: 6773449
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Respiratory, circulatory and acid-base adjustments to hypercapnia in a strictly aquatic and predominantly skin-breathing urodele, Cryptobranchus alleganiensis.
    Boutilier RG; Toews DP
    Respir Physiol; 1981 Nov; 46(2):177-92. PubMed ID: 6801744
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ventilatory response to CO2 and O2 near eupnea in awake dogs.
    Hwang WW; Yamashiro SM; Sedlock D; Grodins FS
    J Appl Physiol (1985); 1988 Aug; 65(2):788-96. PubMed ID: 3139619
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effects of airway anesthesia on ventilatory responses to graded dead spaces and CO2.
    Shindoh C; Hida W; Kikuchi Y; Chonan T; Inoue H; Takishima T
    J Appl Physiol (1985); 1988 May; 64(5):1885-92. PubMed ID: 3391890
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interaction of CO2 and ammonia on cerebral blood flow and O2 consumption in dogs.
    Barzilay Z; Britten AG; Koehler RC; Dean JM; Traystman RJ
    Am J Physiol; 1985 Apr; 248(4 Pt 2):H500-7. PubMed ID: 3920920
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Mechanism of hyperpnea induced by changes in pulmonary blood flow.
    Green JF; Schmidt ND
    J Appl Physiol Respir Environ Exerc Physiol; 1984 May; 56(5):1418-22. PubMed ID: 6427155
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Exercise carbon dioxide (CO2) retention with inhaled CO2 and breathing resistance.
    Shykoff BE; Warkander DE
    Undersea Hyperb Med; 2012; 39(4):815-28. PubMed ID: 22908838
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Effect of asthma and ventilatory loading on arterial PCO2 of humans during submaximal exercise.
    Forster HV; Dunning MB; Lowry TF; Erickson BK; Forster MA; Pan LG; Brice AG; Effros RM
    J Appl Physiol (1985); 1993 Sep; 75(3):1385-94. PubMed ID: 8226555
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Response time and sensitivity of the ventilatory response to CO2 in unanesthetized intact dogs: central vs. peripheral chemoreceptors.
    Smith CA; Rodman JR; Chenuel BJ; Henderson KS; Dempsey JA
    J Appl Physiol (1985); 2006 Jan; 100(1):13-9. PubMed ID: 16166236
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Constant-flow ventilation of apneic dogs.
    Lehnert BE; Oberdörster G; Slutsky AS
    J Appl Physiol Respir Environ Exerc Physiol; 1982 Aug; 53(2):483-9. PubMed ID: 6811534
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Computer simulation of experiments in responses to intravenous and inhaled CO2.
    Yamamoto WS
    J Appl Physiol Respir Environ Exerc Physiol; 1981 Apr; 50(4):835-43. PubMed ID: 6790489
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Respiratory frequency control during external elastic loading and chest compression.
    Shannon R
    Respir Physiol; 1975 Jan; 23(1):11-22. PubMed ID: 1129545
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Entrainment of respiratory rhythm to respiratory oscillations of arterial PCO2 in vagotomized dogs.
    Takahashi E; Tejima K; Yamakoshi K
    J Appl Physiol (1985); 1992 Sep; 73(3):1052-7. PubMed ID: 1400017
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The controversy about blood-gas CO2 equilibrium in lungs: reinvestigation by prolonged CO2 rebreathing in awake dogs during rest and exercise.
    Scotto P; Rieke H; Loeppky JA; Meyer M; Piiper J
    Adv Exp Med Biol; 1985; 191():629-35. PubMed ID: 3938607
    [No Abstract]   [Full Text] [Related]  

  • 80. Effects of airway versus arterial CO2 changes on lung mechanics in dogs.
    Ingram RH
    J Appl Physiol; 1975 Apr; 38(4):603-7. PubMed ID: 1141090
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.