These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 5119767)

  • 21. Isolation and characterization of two novel strains capable of using cyclohexane as carbon source.
    Salamanca D; Engesser KH
    Environ Sci Pollut Res Int; 2014 Nov; 21(22):12757-66. PubMed ID: 24969427
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An efficient enzymatic Baeyer-Villiger oxidation by engineered Escherichia coli cells under non-growing conditions.
    Walton AZ; Stewart JD
    Biotechnol Prog; 2002; 18(2):262-8. PubMed ID: 11934294
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Productivity of cyclohexanone oxidation of the recombinant Corynebacterium glutamicum expressing chnB of Acinetobacter calcoaceticus.
    Doo EH; Lee WH; Seo HS; Seo JH; Park JB
    J Biotechnol; 2009 Jun; 142(2):164-9. PubMed ID: 19397940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The microbial metabolism of acetophenone. Metabolism of acetophenone and some chloroacetophenones by an Arthrobacter species.
    Cripps RE
    Biochem J; 1975 Nov; 152(2):233-41. PubMed ID: 4061
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning a bi-enzymatic cascade reaction in Escherichia coli to facilitate NADPH regeneration for ε-caprolactone production.
    Xiong J; Chen H; Liu R; Yu H; Zhuo M; Zhou T; Li S
    Bioresour Bioprocess; 2021 Apr; 8(1):32. PubMed ID: 38650214
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Intermediate product control in cascade reaction for one-pot production of ε-caprolactone by Escherichia coli.
    Chen H; Liu R; Cai S; Zhang Y; Zhu C; Yu H; Li S
    Biotechnol J; 2024 Feb; 19(2):e2300210. PubMed ID: 38403458
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Efficient Oxidation of Cyclohexane over Bulk Nickel Oxide under Mild Conditions.
    Alnefaie RS; Abboud M; Alhanash A; Hamdy MS
    Molecules; 2022 May; 27(10):. PubMed ID: 35630625
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Continuous cyclohexane oxidation to cyclohexanol using a novel cytochrome P450 monooxygenase from Acidovorax sp. CHX100 in recombinant P. taiwanensis VLB120 biofilms.
    Karande R; Debor L; Salamanca D; Bogdahn F; Engesser KH; Buehler K; Schmid A
    Biotechnol Bioeng; 2016 Jan; 113(1):52-61. PubMed ID: 26153144
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deuterium transfer from [1,1-2-H] ethanol during metabolism of bile acids and cyclohexanone in the isolated perfused rat liver.
    Cronholm T; Eriksson H; Matern S; Sjövall J
    Eur J Biochem; 1975 May; 53(2):405-10. PubMed ID: 1140194
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metabolism of cyclohexaneacetic acid and cyclohexanebutyric acid by Arthrobacter sp. strain CA1.
    Ougham HJ; Trudgill PW
    J Bacteriol; 1982 Jun; 150(3):1172-82. PubMed ID: 7076617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Proposed involvement of a soluble methane monooxygenase homologue in the cyclohexane-dependent growth of a new Brachymonas species.
    Brzostowicz PC; Walters DM; Jackson RE; Halsey KH; Ni H; Rouvière PE
    Environ Microbiol; 2005 Feb; 7(2):179-90. PubMed ID: 15658985
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Kinetic insights into ϵ-caprolactone synthesis: Improvement of an enzymatic cascade reaction.
    Scherkus C; Schmidt S; Bornscheuer UT; Gröger H; Kara S; Liese A
    Biotechnol Bioeng; 2017 Jun; 114(6):1215-1221. PubMed ID: 28112389
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimization of Cyclohexanol and Cyclohexanone Yield in the Photocatalytic Oxofunctionalization of Cyclohexane over Degussa P-25 under Visible Light.
    Henríquez A; Melin V; Moreno N; Mansilla HD; Contreras D
    Molecules; 2019 Jun; 24(12):. PubMed ID: 31208090
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of microwave and mechanochemical energy inputs in the catalytic oxidation of cyclohexane.
    Ribeiro APC; Alegria ECBA; Kopylovich MN; Ferraria AM; Botelho do Rego AM; Pombeiro AJL
    Dalton Trans; 2018 Jun; 47(25):8193-8198. PubMed ID: 29872828
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An oxygenase from guinea-pig liver that catalyses sulphoxidation.
    Prema K; Gopinathan KP
    Biochem J; 1974 Dec; 143(3):613-24. PubMed ID: 4462745
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nocardia globerula NHB-2: a versatile nitrile-degrading organism.
    Bhalla TC; Kumar H
    Can J Microbiol; 2005 Aug; 51(8):705-8. PubMed ID: 16234868
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of Cyclohexane by Molecular Oxygen Photoassisted by meso-Tetraarylporphyrin Iron(III)-Hydroxo Complexes.
    Maldotti A; Bartocci C; Varani G; Molinari A; Battioni P; Mansuy D
    Inorg Chem; 1996 Feb; 35(5):1126-1131. PubMed ID: 11666299
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Isotope exchange studies on liver alcohol dehydrogenase with cyclohexanol and cyclohexanone as reactants.
    Ainslie GR; Cleland WW
    J Biol Chem; 1972 Feb; 247(3):946-51. PubMed ID: 4333518
    [No Abstract]   [Full Text] [Related]  

  • 39. Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432.
    Alvarez HM; Souto MF; Viale A; Pucci OH
    FEMS Microbiol Lett; 2001 Jun; 200(2):195-200. PubMed ID: 11425475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The highly selective oxidation of cyclohexane to cyclohexanone and cyclohexanol over VAlPO
    Hong Y; Sun D; Fang Y
    Chem Cent J; 2018 Apr; 12(1):36. PubMed ID: 29619597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.