These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 512204)

  • 1. Comparison of the spectra of the cochlear microphonic and of the sound-elicited electrical impedance changes measured in scala media of the guinea pig.
    Hubbard AE; Geisler CD; Mountain DC
    J Acoust Soc Am; 1979 Aug; 66(2):431-45. PubMed ID: 512204
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig.
    Mountain DC; Hubbard AE; Geisler CD
    Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The spectral content of the cochlear microphonic measured in scala media of the guinea pig cochlea.
    Hubbard AE; Mountain DC; Geisler CD
    J Acoust Soc Am; 1979 Aug; 66(2):415-30. PubMed ID: 512203
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulation of efferents alters the cochlear microphonic and the sound-induced resistance changes measured in scale media of the guinea pig.
    Mountain DC; Geisler CD; Hubbard AE
    Hear Res; 1980 Oct; 3(3):231-40. PubMed ID: 7440426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-tone interactions in the cochlear microphonic.
    Cheatham MA; Dallos P
    Hear Res; 1982 Sep; 8(1):29-48. PubMed ID: 7142031
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound-induced resistance changes in the inner ear.
    Geisler CD; Mountain DC; Hubbard AE
    J Acoust Soc Am; 1980 May; 67(5):1729-35. PubMed ID: 7372927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DC potentials of the lateral wall of the scala media.
    Urquiza R; Diez de los Rios A
    Arch Otorhinolaryngol; 1987; 244(2):96-9. PubMed ID: 3662931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrophysiological responses in guinea pig cochlea to low frequency sound stimuli: distortion of cochlear microphonic (CM) wave form.
    Maehara N; Sadamoto T; Yamamura K
    Eur J Appl Physiol Occup Physiol; 1983; 51(1):85-95. PubMed ID: 6684037
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of responses of spiral ganglion cells in the guinea pig cochlea by low frequency sound.
    Sellick PM; Patuzzi R; Johnstone BM
    Hear Res; 1982 Jul; 7(2):199-221. PubMed ID: 7107528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cochlear microphonic evidence for mechanical propagation of distortion products (f2 - f1) and (2f1 - f2).
    Gibian GL; Kim DO
    Hear Res; 1982 Jan; 6(1):35-59. PubMed ID: 7054135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products.
    Brown DJ; Hartsock JJ; Gill RM; Fitzgerald HE; Salt AN
    J Acoust Soc Am; 2009 Apr; 125(4):2129-45. PubMed ID: 19354389
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea.
    Sellick PM; Russell IJ
    Hear Res; 1980 Jun; 2(3-4):439-45. PubMed ID: 7410248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Changes in endolymphatic potential and crossed olivocochlear bundle stimulation alter cochlear mechanics.
    Mountain DC
    Science; 1980 Oct; 210(4465):71-2. PubMed ID: 7414321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of direct current on dc receptor potentials from cochlear inner hair cells in the guinea pig.
    Nuttall AL
    J Acoust Soc Am; 1985 Jan; 77(1):165-75. PubMed ID: 3973211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea.
    Patuzzi R; Moleirinho A
    Hear Res; 1998 Nov; 125(1-2):1-16. PubMed ID: 9833960
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of BAPTA and 4AP in scala media on transduction and cochlear gain.
    Sellick PM; Robertson D; Patuzzi R
    Hear Res; 2006 Jan; 211(1-2):7-15. PubMed ID: 16343830
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pressure-induced basilar membrane position shifts and the stimulus-evoked potentials in the low-frequency region of the guinea pig cochlea.
    Fridberger A; van Maarseveen JT; Scarfone E; Ulfendahl M; Flock B; Flock A
    Acta Physiol Scand; 1997 Oct; 161(2):239-52. PubMed ID: 9366967
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.