These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by side-chain cleavage. Gamar Y; Gaunt JK Biochem J; 1971 May; 122(4):527-31. PubMed ID: 5123886 [TBL] [Abstract][Full Text] [Related]
5. Bacterial metabolism of 2,4-dichlorophenoxyacetate. Evans WC; Smith BS; Fernley HN; Davies JI Biochem J; 1971 May; 122(4):543-51. PubMed ID: 5123888 [TBL] [Abstract][Full Text] [Related]
6. The metabolism of cresols by species of Pseudomonas. Bayly RC; Dagley S; Gibson DT Biochem J; 1966 Nov; 101(2):293-301. PubMed ID: 5966268 [TBL] [Abstract][Full Text] [Related]
7. Dextro-gamma-carboxymethyl-gamma-methyl-delta-alpha-butenolide. A 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum. Catelani D; Fiecchi A; Galli E Biochem J; 1971 Jan; 121(1):89-92. PubMed ID: 5116566 [TBL] [Abstract][Full Text] [Related]
8. Intradiol pathway of para-cresol conversion by Rhodococcus opacus 1CP. Kolomytseva MP; Baskunov BP; Golovleva LA Biotechnol J; 2007 Jul; 2(7):886-93. PubMed ID: 17506026 [TBL] [Abstract][Full Text] [Related]
9. Pathways for the degradation of m-cresol and p-cresol by Pseudomonas putida. Hopper DJ; Taylor DG J Bacteriol; 1975 Apr; 122(1):1-6. PubMed ID: 1123316 [TBL] [Abstract][Full Text] [Related]
10. Metabolism of 3-chloro-, 4-chloro-, and 3,5-dichlorobenzoate by a pseudomonad. Hartmann J; Reineke W; Knackmuss HJ Appl Environ Microbiol; 1979 Mar; 37(3):421-8. PubMed ID: 453823 [TBL] [Abstract][Full Text] [Related]
11. Metabolism of phenol and cresols by Bacillus stearothermophilus. Buswell JA J Bacteriol; 1975 Dec; 124(3):1077-83. PubMed ID: 1194230 [TBL] [Abstract][Full Text] [Related]
12. The metabolism of 4-chloro-2-methylphenoxyacetic acid in plants. Collins DJ; Gaunt JK Biochem J; 1971 Sep; 124(2):9P. PubMed ID: 5158516 [No Abstract] [Full Text] [Related]
13. Metabolism of dichloromethylcatechols as central intermediates in the degradation of dichlorotoluenes by Ralstonia sp. strain PS12. Pollmann K; Kaschabek S; Wray V; Reineke W; Pieper DH J Bacteriol; 2002 Oct; 184(19):5261-74. PubMed ID: 12218011 [TBL] [Abstract][Full Text] [Related]
14. Identification of 4-chloro-2-methylphenol as a soil degradation product of ring-labelled [14C]mecoprop. Smith AE Bull Environ Contam Toxicol; 1985 May; 34(5):656-60. PubMed ID: 4005444 [No Abstract] [Full Text] [Related]
15. Degradation of p-chlorotoluene by a mutant of Pseudomonas sp. strain JS6. Haigler BE; Spain JC Appl Environ Microbiol; 1989 Feb; 55(2):372-9. PubMed ID: 2719478 [TBL] [Abstract][Full Text] [Related]
16. Altering toluene 4-monooxygenase by active-site engineering for the synthesis of 3-methoxycatechol, methoxyhydroquinone, and methylhydroquinone. Tao Y; Fishman A; Bentley WE; Wood TK J Bacteriol; 2004 Jul; 186(14):4705-13. PubMed ID: 15231803 [TBL] [Abstract][Full Text] [Related]
17. Gentisic acid and its 3- and 4-methyl-substituted homologoues as intermediates in the bacterial degradation of m-cresol, 3,5-xylenol and 2,5-xylenol. Hopper DJ; Chapman PJ Biochem J; 1971 Mar; 122(1):19-28. PubMed ID: 4330964 [TBL] [Abstract][Full Text] [Related]
18. Pseudomonas putida mutants defective in the metabolism of the products of meta fission of catechol and its methyl analogues. Wigmore GJ; Bayly RC; Di Berardino D J Bacteriol; 1974 Oct; 120(1):31-7. PubMed ID: 4418942 [TBL] [Abstract][Full Text] [Related]
19. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil pseudomonad. Jeffrey AM; Knight M; Evans WC Biochem J; 1972 Nov; 130(2):373-81. PubMed ID: 4146277 [TBL] [Abstract][Full Text] [Related]
20. Phenol and cresol metabolism in Bacillus pumilus isolated from contaminated groundwater. Günther K; Schlosser D; Fritsche W J Basic Microbiol; 1995; 35(2):83-92. PubMed ID: 7783002 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]