These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 5123887)

  • 1. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Ring-fission, lactonizing and delactonizing enzymes.
    Gaunt JK; Evans WC
    Biochem J; 1971 May; 122(4):533-42. PubMed ID: 5123887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolism of 4-chloro-2-methylphenoxyacetate by a soil pseudomonad. Preliminary evidence for the metabolic pathway.
    Gaunt JK; Evans WC
    Biochem J; 1971 May; 122(4):519-26. PubMed ID: 5123885
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bacterial metabolism of 2,4-dichlorophenoxyacetate.
    Evans WC; Smith BS; Fernley HN; Davies JI
    Biochem J; 1971 May; 122(4):543-51. PubMed ID: 5123888
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial metabolism of 4-chlorophenoxyacetate.
    Evans WC; Smith BS; Moss P; Fernley HN
    Biochem J; 1971 May; 122(4):509-17. PubMed ID: 5123884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by side-chain cleavage.
    Gamar Y; Gaunt JK
    Biochem J; 1971 May; 122(4):527-31. PubMed ID: 5123886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dextro-gamma-carboxymethyl-gamma-methyl-delta-alpha-butenolide. A 1,2-ring-fission product of 4-methylcatechol by Pseudomonas desmolyticum.
    Catelani D; Fiecchi A; Galli E
    Biochem J; 1971 Jan; 121(1):89-92. PubMed ID: 5116566
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 2,4-Dichlorophenoxyacetate metabolism by Arthrobacter sp.: accumulation of a chlorobutenolide.
    Sharpee KW; Duxbury JM; Alexander M
    Appl Microbiol; 1973 Sep; 26(3):445-7. PubMed ID: 4751794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bacterial degradation of flavonoids. Hydroxylation of the A-ring of taxifolin by a soil pseudomonad.
    Jeffrey AM; Knight M; Evans WC
    Biochem J; 1972 Nov; 130(2):373-81. PubMed ID: 4146277
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Co-metabolism of methyl- and chloro-substituted catechols by an Achromobacter sp. possessing a new meta-cleaving oxygenase.
    Horvath RS
    Biochem J; 1970 Oct; 119(5):871-6. PubMed ID: 5492853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The metabolism of cresols by species of Pseudomonas.
    Bayly RC; Dagley S; Gibson DT
    Biochem J; 1966 Nov; 101(2):293-301. PubMed ID: 5966268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metabolism of aromatic acids by micro-organisms. Metabolic pathways in the fungi.
    Cain RB; Bilton RF; Darrah JA
    Biochem J; 1968 Aug; 108(5):797-828. PubMed ID: 5691754
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolism of arylsulphonates by micro-organisms.
    Cain RB; Farr DR
    Biochem J; 1968 Feb; 106(4):859-77. PubMed ID: 5637368
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consumers of 4-chloro-2-methylphenoxyacetic acid from agricultural soil and drilosphere harbor cadA, r/sdpA, and tfdA-like gene encoding oxygenases.
    Liu YJ; Liu SJ; Drake HL; Horn MA
    FEMS Microbiol Ecol; 2013 Oct; 86(1):114-29. PubMed ID: 23646893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolism of dichloromethylcatechols as central intermediates in the degradation of dichlorotoluenes by Ralstonia sp. strain PS12.
    Pollmann K; Kaschabek S; Wray V; Reineke W; Pieper DH
    J Bacteriol; 2002 Oct; 184(19):5261-74. PubMed ID: 12218011
    [TBL] [Abstract][Full Text] [Related]  

  • 15. OXIDATIVE METABOLISM OF PHENANTHRENE AND ANTHRACENE BY SOIL PSEUDOMONADS. THE RING-FISSION MECHANISM.
    EVANS WC; FERNLEY HN; GRIFFITHS E
    Biochem J; 1965 Jun; 95(3):819-31. PubMed ID: 14342521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation and partial characterization of an extradiol non-haem iron dioxygenase which preferentially cleaves 3-methylcatechol.
    Wallis MG; Chapman SK
    Biochem J; 1990 Mar; 266(2):605-9. PubMed ID: 2317207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The metabolism of protocatechuate by Pseudomonas testosteroni.
    Dagley S; Geary PJ; Wood JM
    Biochem J; 1968 Oct; 109(4):559-68. PubMed ID: 5683506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The metabolism of thymol by a Pseudomonas.
    Chamberlain EM; Dagley S
    Biochem J; 1968 Dec; 110(4):755-63. PubMed ID: 4303067
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of clodinafop propargyl by Pseudomonas sp. strain B2.
    Singh B
    Bull Environ Contam Toxicol; 2013 Dec; 91(6):730-3. PubMed ID: 24121741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comamonas acidovorans strain MC1: a new isolate capable of degrading the chiral herbicides dichlorprop and mecoprop and the herbicides 2,4-D and MCPA.
    Müller RH; Jorks S; Kleinsteuber S; Babel W
    Microbiol Res; 1999 Dec; 154(3):241-6. PubMed ID: 10652787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.