These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 5124380)

  • 1. Cerebral-cortex hexokinase. Elucidation of reaction mechanisms by substrate and dead-end inhibitor kinetic analysis.
    Bachelard HS; Clark AG; Thompson MF
    Biochem J; 1971 Aug; 123(5):707-15. PubMed ID: 5124380
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in catalytic properties between cerebral cytoplasmic and mitochondrial hexokinases.
    Thompson MF; Bachelard HS
    Biochem J; 1977 Mar; 161(3):593-8. PubMed ID: 851431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adenine nucleotides and magnesium ions in relation to control of mammalian cerebral-cortex hexokinase.
    Bachelard HS; Goldfarb PS
    Biochem J; 1969 May; 112(5):579-86. PubMed ID: 5822062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of rat liver hexokinase D ('glucokinase') in non-co-operative conditions show an ordered mechanism with MgADP as the last product to be released.
    Monasterio O; Cárdenas ML
    Biochem J; 2003 Apr; 371(Pt 1):29-38. PubMed ID: 12513690
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cerebral-cortex hexokinase. Comparison of properties of solubilized mitochondrial and cytoplasmic activities.
    Thompson MF; Bachelard HS
    Biochem J; 1970 Jun; 118(1):25-34. PubMed ID: 5472153
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Factors affecting the glucose 6-phosphate inhibition of hexokinase from cerebral cortex tissue of the guinea pig.
    Newsholme EA; Rolleston FS; Taylor K
    Biochem J; 1968 Jan; 106(1):193-201. PubMed ID: 5721456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Use of chromium-adenosine triphosphate and lyxose to elucidate the kinetic mechanism and coordination state of the nucleotide substrate for yeast hexokinase.
    Danenberg KD; Cleland WW
    Biochemistry; 1975 Jan; 14(1):28-39. PubMed ID: 1089014
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.
    Purich DL; Fromm HJ
    Biochem J; 1972 Nov; 130(1):63-9. PubMed ID: 4655453
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetic studies on the two common inherited forms of human erythrocyte adenylate kinase.
    Brownson C; Spencer N
    Biochem J; 1972 Dec; 130(3):805-11. PubMed ID: 4664935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human deoxythymidine kinase II: substrate specificity and kinetic behavior of the cytoplasmic and mitochondrial isozymes derived from blast cells of acute myelocytic leukemia.
    Lee LS; Cheng Yc
    Biochemistry; 1976 Aug; 15(17):3686-90. PubMed ID: 1066165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subcellular distribution and kinetic properties of cytosolic and non-cytosolic hexokinases in maize seedling roots: implications for hexose phosphorylation.
    da-Silva WS; Rezende GL; Galina A
    J Exp Bot; 2001 Jun; 52(359):1191-201. PubMed ID: 11432937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Allosteric activation of brain hexokinase by magnesium ions and by magnesium ion--adenosine triphosphate complex.
    Bachelard HS
    Biochem J; 1971 Nov; 125(1):249-54. PubMed ID: 5158910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate synergism and the kinetic mechanism of yeast hexokinase.
    Viola RE; Raushel FM; Rendina AR; Cleland WW
    Biochemistry; 1982 Mar; 21(6):1295-302. PubMed ID: 7041974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic studies of adenosine kinase from L1210 cells: a model enzyme with a two-site ping-pong mechanism.
    Chang CH; Cha S; Brockman RW; Bennett LL
    Biochemistry; 1983 Feb; 22(3):600-11. PubMed ID: 6301523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A kinetic method for determining dissociation constants for metal complexes of adenosine 5'-triphosphate and adenosine 5'-diphosphate.
    Morrison JF; Cleland WW
    Biochemistry; 1980 Jul; 19(14):3127-31. PubMed ID: 7407034
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The subcellular distribution and properties of hexokinases in the guinea-pig cerebral cortex.
    Bachelard HS
    Biochem J; 1967 Jul; 104(1):286-92. PubMed ID: 6035519
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suppression of kinetic cooperativity of hexokinase D (glucokinase) by competitive inhibitors. A slow transition model.
    Cárdenas ML; Rabajille E; Niemeyer H
    Eur J Biochem; 1984 Nov; 145(1):163-71. PubMed ID: 6489350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of substrate-site-directed inhibitors of adenylate kinase and hexokinase. Effect of substrate substituents on affinity on affinity for the adenine nucleotide sites.
    Hampton A; Slotin LA; Kappler F; Sasaki T; Perini F
    J Med Chem; 1976 Dec; 19(12):1371-7. PubMed ID: 187750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial hexokinase of rat hepatoma cells in culture: solubilization and kinetic properties.
    Bustamante E; Pedersen PL
    Biochemistry; 1980 Oct; 19(22):4972-7. PubMed ID: 6779859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pig red blood cell hexokinase: regulatory characteristics and possible physiological role.
    Magnani M; Stocchi V; Serafini N; Piatti E; Dachà M; Fornaini G
    Arch Biochem Biophys; 1983 Oct; 226(1):377-87. PubMed ID: 6605723
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.