BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 512587)

  • 1. Macrophage oxygen-dependent antimicrobial activity. II. The role of oxygen intermediates.
    Murray HW; Juangbhanich CW; Nathan CF; Cohn ZA
    J Exp Med; 1979 Oct; 150(4):950-64. PubMed ID: 512587
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macrophage oxygen-dependent antimicrobial activity. I. Susceptibility of Toxoplasma gondii to oxygen intermediates.
    Murray HW; Cohn ZA
    J Exp Med; 1979 Oct; 150(4):938-49. PubMed ID: 92521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Macrophage oxygen-dependent antimicrobial activity. III. Enhanced oxidative metabolism as an expression of macrophage activation.
    Murray HW; Cohn ZA
    J Exp Med; 1980 Dec; 152(6):1596-609. PubMed ID: 6256463
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macrophage oxygen-dependent antimicrobial activity. IV. Role of endogenous scavengers of oxygen intermediates.
    Murray HW; Nathan CF; Cohn ZA
    J Exp Med; 1980 Dec; 152(6):1610-24. PubMed ID: 7452149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Susceptibility of Eimeria bovis and Toxoplasma gondii to oxygen intermediates and a new mathematical model for parasite killing.
    Hughes HP; Boik RJ; Gerhardt SA; Speer CA
    J Parasitol; 1989 Aug; 75(4):489-97. PubMed ID: 2760759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages.
    Murray HW
    J Exp Med; 1981 May; 153(5):1302-15. PubMed ID: 7252418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human mononuclear phagocyte antiprotozoal mechanisms: oxygen-dependent vs oxygen-independent activity against intracellular Toxoplasma gondii.
    Murray HW; Rubin BY; Carriero SM; Harris AM; Jaffee EA
    J Immunol; 1985 Mar; 134(3):1982-8. PubMed ID: 2981929
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppression of macrophage antimicrobial activity by a tumor cell product.
    Szuro-Sudol A; Murray HW; Nathan CF
    J Immunol; 1983 Jul; 131(1):384-7. PubMed ID: 6408180
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Macrophage oxidative metabolism and intracellular Toxoplasma gondii.
    Chang HR; Pechère JC
    Microb Pathog; 1989 Jul; 7(1):37-44. PubMed ID: 2509852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and -independent leishmanicidal activity.
    Murray HW; Cartelli DM
    J Clin Invest; 1983 Jul; 72(1):32-44. PubMed ID: 6308049
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Growth of Trypanosoma cruzi in a cloned macrophage cell line and in a variant defective in oxygen metabolism.
    Tanaka Y; Tanowitz H; Bloom BR
    Infect Immun; 1983 Sep; 41(3):1322-31. PubMed ID: 6350185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment in vitro of immunity against Toxoplasma gondii.
    Jones TC; Len L; Hirsch JG
    J Exp Med; 1975 Feb; 141(2):466-82. PubMed ID: 1113065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma.
    Murray HW; Spitalny GL; Nathan CF
    J Immunol; 1985 Mar; 134(3):1619-22. PubMed ID: 3918107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parasiticidal activity of bovine lactoperoxidase against Toxoplasma gondii.
    Tanaka T; Murakami S; Kumura H; Igarashi I; Shimazaki K
    Biochem Cell Biol; 2006 Oct; 84(5):774-9. PubMed ID: 17167541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of killing of Toxoplasma gondii by rat peritoneal macrophages.
    McCabe RE; Remington JS
    Infect Immun; 1986 Apr; 52(1):151-5. PubMed ID: 3007358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of reactive oxygen intermediate scavengers on the antitoxoplasmic activity of activated macrophages.
    Saito A; Igarashi I; Miyahara K; Venturini C; Claveria FG; Hirose T; Suzuki N; Ono K
    Parasitol Res; 1992; 78(1):28-31. PubMed ID: 1584743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toxoplasmacidal activity of Obioactin derived from hydrolyzed Toxoplasma immune bovine serum in heterologous cell cultures.
    Suzuki N; Izumo A; Sakurai H; Saito A; Miura H; Osaki H
    Zentralbl Bakteriol Mikrobiol Hyg A; 1984 Mar; 256(3):356-66. PubMed ID: 6328796
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of neonatal spleen cell products on the multiplication of toxoplasma in rat peritoneal macrophages.
    Sakurai H; Igarashi I; Omata Y; Saito A; Suzuki N
    J Immunol; 1983 Sep; 131(3):1527-30. PubMed ID: 6886423
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation between release of reactive oxygen intermediates and inhibition of Toxoplasma multiplication in mouse peritoneal and alveolar macrophages and kidney cells after in vitro incubation with Obioactin, lonomycin A, muramyl dipeptide, lipopolysaccharide or Toxoplasma lysate antigen.
    Saito A; Sakurai H; Saito T; Taji S; Miyagami T; Suzuki N; Seitz HM; Osaki H
    Zentralbl Bakteriol Mikrobiol Hyg A; 1987 May; 264(3-4):446-54. PubMed ID: 3660981
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens.
    Wilson CB; Tsai V; Remington JS
    J Exp Med; 1980 Feb; 151(2):328-46. PubMed ID: 7356726
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.