These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 5126079)

  • 1. Continuous culture of thiorhodaceae. Sulfide and sulfur limited growth of Chromatium vinosum.
    Van Gemerden H; Jannasch HW
    Arch Mikrobiol; 1971; 79(4):345-53. PubMed ID: 5126079
    [No Abstract]   [Full Text] [Related]  

  • 2. SULPHUR METABOLISM IN THIORHODACEAE. II. STOICHIOMETRIC RELATIONSHIP OF CO2 FIXATION TO OXIDATION OF HYDROGEN SULPHIDE AND INTRACELLULAR SULPHUR IN CHROMATIUM OKENII.
    TRUEPER HG
    Antonie Van Leeuwenhoek; 1964; 30():385-94. PubMed ID: 14274131
    [No Abstract]   [Full Text] [Related]  

  • 3. Sulfur metabolism in Thiorhodaceae. IV. Assimilatory reduction of sulfate by Thiocapsa floridana and Chromatium species.
    Thiele HH
    Antonie Van Leeuwenhoek; 1968; 34(3):341-9. PubMed ID: 5305787
    [No Abstract]   [Full Text] [Related]  

  • 4. Occurrence of purple sulfur bacteria in a sewage treatment lagoon.
    Holm HW; Vennes JW
    Appl Microbiol; 1970 Jun; 19(6):988-96. PubMed ID: 4917194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unexpected extracellular and intracellular sulfur species during growth of Allochromatium vinosum with reduced sulfur compounds.
    Franz B; Gehrke T; Lichtenberg H; Hormes J; Dahl C; Prange A
    Microbiology (Reading); 2009 Aug; 155(Pt 8):2766-2774. PubMed ID: 19423634
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth measurements of Chromatium cultures.
    van Gemerden H
    Arch Mikrobiol; 1968; 64(2):103-10. PubMed ID: 4886553
    [No Abstract]   [Full Text] [Related]  

  • 7. [Role of spectral composition of light and its intensity on the growth of photosynthesizing purple sulfur bacterium Chromatium vinosum].
    Osnitskaia LK; Chudina VI
    Mikrobiologiia; 1965; 34(1):19-23. PubMed ID: 5860422
    [No Abstract]   [Full Text] [Related]  

  • 8. Kinetics of photoacclimation in cultures of Chromatium vinosum DSM 185 during shifts in light irradiance.
    Sánchez O; Mas J
    Microbiology (Reading); 1999 Apr; 145 ( Pt 4)():827-833. PubMed ID: 10220162
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variable cellular composition of Chromatium in browing cultures.
    Schmidt GL; Kamen MD
    Arch Mikrobiol; 1970; 73(1):1-18. PubMed ID: 4921934
    [No Abstract]   [Full Text] [Related]  

  • 10. Sulfur metabolism in Thiorhodaceae. V. Enzymes of sulfur metabolism in Thiocapsa floridana and Chromatium species.
    Thiele HH
    Antonie Van Leeuwenhoek; 1968; 34(3):350-6. PubMed ID: 5305788
    [No Abstract]   [Full Text] [Related]  

  • 11. Catalytic electron transport in Chromatium vinosum [NiFe]-hydrogenase: application of voltammetry in detecting redox-active centers and establishing that hydrogen oxidation is very fast even at potentials close to the reversible H+/H2 value.
    Pershad HR; Duff JL; Heering HA; Duin EC; Albracht SP; Armstrong FA
    Biochemistry; 1999 Jul; 38(28):8992-9. PubMed ID: 10413472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure of the Chromatium sulfur particle and its protein membrane.
    Nicolson GL; Schmidt GL
    J Bacteriol; 1971 Mar; 105(3):1142-8. PubMed ID: 4100832
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inhibition of photosynthetic sulfide oxidation by organic cations.
    Brune DC; Rivera Z; Jiménez LE
    Biochem Biophys Res Commun; 1984 Jun; 121(3):755-61. PubMed ID: 6743318
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron paramagnetic resonance determination of a low-lying excited state in Chromatium vinosum high-potential iron protein.
    Blum H; Salerno JC; Prince RC; Leigh JS; Ohnishi T
    Biophys J; 1977 Oct; 20(1):23-31. PubMed ID: 198036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Marine phototrophic sulfur bacteria. Assimilation of organic and mineral substances, and influnce of the NaCl content of the medium upon growth].
    Matheron R; Baulaigue R
    Arch Mikrobiol; 1972; 86(4):291-304. PubMed ID: 5084313
    [No Abstract]   [Full Text] [Related]  

  • 16. Isolation and characterization of soluble electron transfer proteins from Chromatium purpuratum.
    Kerfeld CA; Chan C; Hirasawa M; Kleis-SanFrancisco S; Yeates TO; Knaff DB
    Biochemistry; 1996 Jun; 35(24):7812-8. PubMed ID: 8672482
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Utilization of reducing power in light-limited cultures of Chromatium vinosum DSM 185.
    Sánchez O; Van Gemerden H; Mas J
    Arch Microbiol; 1998 Nov; 170(6):411-7. PubMed ID: 9799284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [CAROTENOIDS IN THIORHODACEAE. II. CAROTENOID COMPOSITION OF THIOSPIRILLUM JENENSE WINOGRADSKY AND CHROMATIUM VINOSUM WINOGRADSKY].
    SCHMIDT K
    Arch Mikrobiol; 1963 Aug; 46():127-37. PubMed ID: 14044830
    [No Abstract]   [Full Text] [Related]  

  • 19. SULPHUR METABOLISM IN THIORHODACEAE. I. QUANTITATIVE MEASUREMENTS ON GROWING CELLS OF CHROMATIUM OKENII.
    TRUEPER HG; SCHLEGEL HG
    Antonie Van Leeuwenhoek; 1964; 30():225-38. PubMed ID: 14218435
    [No Abstract]   [Full Text] [Related]  

  • 20. Observations on light-induced oxidation reactions in the electron transport system of Chromatium.
    Kennel SJ; Bartsch RG; Kamen MD
    Biophys J; 1972 Jul; 12(7):882-96. PubMed ID: 5037342
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.