BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 5128184)

  • 1. Further studies on the biosynthesis of pyrrolnitrin from tryptophan by Pseudomonas.
    Floss HG; Manni PE; Hamill RL; Mabe JA
    Biochem Biophys Res Commun; 1971 Nov; 45(3):781-7. PubMed ID: 5128184
    [No Abstract]   [Full Text] [Related]  

  • 2. A 13C nuclear magnetic resonance study on the biosynthesis of pyrrolnitrin from tryptophan by Pseudomonas.
    J Am Chem Soc; 1972 Dec; 94(25):8942-4. PubMed ID: 4648308
    [No Abstract]   [Full Text] [Related]  

  • 3. Metabolism of tryptophan by Pseudomonas aureofaciens. 3. Production of substituted pyrrolnitrins from tryptophan analogues.
    Hamill RL; Elander RP; Mabe JA; Gorman M
    Appl Microbiol; 1970 May; 19(5):721-5. PubMed ID: 4316270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosynthesis of pyrrolnitrins by analogue-resistant mutants of Pseudomonas fluorescens.
    Elander RP; Mabe JA; Hamill RL; Gorman M
    Folia Microbiol (Praha); 1971; 16(3):156-65. PubMed ID: 5564336
    [No Abstract]   [Full Text] [Related]  

  • 5. The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens.
    Chang CJ; Floss HG; Hook DJ; Mabe JA; Manni PE; Martin LL; Schröder K; Shieh TL
    J Antibiot (Tokyo); 1981 May; 34(5):555-66. PubMed ID: 7275838
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosynthesis of pyrrolnitrin. Incorporation of 13C, 15N double-labelled D- and L-tryptophan.
    Zhou P; Mocek U; Siesel B; Floss HG
    J Basic Microbiol; 1992; 32(3):209-14. PubMed ID: 1512712
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation of substituted phenyl pyrroles through the metabolism of tryptophan analogues.
    Gorman M; Hamill RL; Elander RP; Mabe J
    Biochem Biophys Res Commun; 1968 May; 31(3):294-8. PubMed ID: 5653643
    [No Abstract]   [Full Text] [Related]  

  • 8. Metabolism of tryptophans by Pseudomonas aureofaciens. VI. Production of pyrrolnitrin by selected Pseudomonas species.
    Elander RP; Mabe JA; Hamill RH; Gorman M
    Appl Microbiol; 1968 May; 16(5):753-8. PubMed ID: 4968963
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolism of tryptophans by Pseudomonas aureofaciens. I. Biosynthesis of pyrrolnitrin.
    Lively DH; Gorman M; Haney ME; Mabe JA
    Antimicrob Agents Chemother (Bethesda); 1966; 6():462-9. PubMed ID: 5985273
    [No Abstract]   [Full Text] [Related]  

  • 10. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis.
    Salcher O; Lingens F
    J Gen Microbiol; 1980 Dec; 121(2):465-71. PubMed ID: 7264603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The biosynthesis of brominated pyrrolnitrin derivatives by Pseudomonas aureofaciens.
    van Pée KH; Salcher O; Fischer P; Bokel M; Lingens F
    J Antibiot (Tokyo); 1983 Dec; 36(12):1735-42. PubMed ID: 6662814
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of a mutant of Pseudomonas aureofaciens ATCC 15926 with an increased capacity for synthesis of pyrrolnitrin.
    Salcher O; Lingens F
    J Gen Microbiol; 1980 Jun; 118(2):509-13. PubMed ID: 7441201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Metabolism of tryptophans by Pseudomonas aureofaciens. V. Conversion of tryptophan to pyrrolnitrin.
    Hamill R; Elander R; Mabe J; Gorman M
    Antimicrob Agents Chemother (Bethesda); 1967; 7():388-96. PubMed ID: 5596164
    [No Abstract]   [Full Text] [Related]  

  • 14. Determination of pyrrolnitrin and derivatives by gas-liquid chromatography.
    Hamill RL; Sullivan HR; Gorman M
    Appl Microbiol; 1969 Sep; 18(3):310-2. PubMed ID: 5373671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conservation of the pyrrolnitrin biosynthetic gene cluster among six pyrrolnitrin-producing strains.
    Hammer PE; Burd W; Hill DS; Ligon JM; van Pée K
    FEMS Microbiol Lett; 1999 Nov; 180(1):39-44. PubMed ID: 10547442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biosynthesis of echinulin. Isoprenylation of cyclo-L-alanyl-L-tryptophanyl.
    Allen CM
    Biochemistry; 1972 May; 11(11):2154-60. PubMed ID: 4337488
    [No Abstract]   [Full Text] [Related]  

  • 17. Biological inactivation of pyrrolnitrin. Identification and synthesis of pyrrolnitrin metabolites.
    Murphy PJ; Williams TL
    J Med Chem; 1972 Feb; 15(2):137-9. PubMed ID: 5008238
    [No Abstract]   [Full Text] [Related]  

  • 18. Halogenation of aromatic compounds: thermodynamic, mechanistic and ecological aspects.
    Dolfing J
    FEMS Microbiol Lett; 1998 Oct; 167(2):271-4. PubMed ID: 9867470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Composition and structure of the ornithine-containing lipid from Pseudomonas rubescens.
    Wilkinson SG
    Biochim Biophys Acta; 1972 May; 270(1):1-17. PubMed ID: 5037328
    [No Abstract]   [Full Text] [Related]  

  • 20. Enzymatic isomerization of oleic acid to trans- 10 -octadecenoic acid.
    Mortimer CE; Niehaus WG
    Biochem Biophys Res Commun; 1972 Dec; 49(6):1650-6. PubMed ID: 4639818
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.