These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 5129013)

  • 1. Oxidation of hydrogen sulfide by green bacteria in relation to the presence of organic compounds.
    Ivanovskiĭ RN; Krasil'nikova EN; Kondrat'eva EN
    Mikrobiologiia; 1971; 40(5):783-9. PubMed ID: 5129013
    [No Abstract]   [Full Text] [Related]  

  • 2. Multiple-variant design for the enrichment of photosynthetic bacterial populations.
    Jeffries TW; Butler RG
    Can J Microbiol; 1975 Jul; 21(7):0146-54. PubMed ID: 1097075
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate-reducing, sulfide-oxidizing bacteria as microbial oxidants for rapid biological sulfide removal.
    De Gusseme B; De Schryver P; De Cooman M; Verbeken K; Boeckx P; Verstraete W; Boon N
    FEMS Microbiol Ecol; 2009 Jan; 67(1):151-61. PubMed ID: 19120464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sunken wood habitat for thiotrophic symbiosis in mangrove swamps.
    Laurent MC; Gros O; Brulport JP; Gaill F; Bris NL
    Mar Environ Res; 2009 Mar; 67(2):83-8. PubMed ID: 19131100
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of acetate on oxidation of hydrogen sulfide and photoassimilation of carbon dioxide by Ectothiorhodospira shaposhnikovii].
    Firsov NN; Ivanovskiĭ RN; Kondrat'eve EN
    Mikrobiologiia; 1972; 41(6):953-8. PubMed ID: 4657968
    [No Abstract]   [Full Text] [Related]  

  • 6. Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation.
    Velasco A; Ramírez M; Volke-Sepúlveda T; González-Sánchez A; Revah S
    J Hazard Mater; 2008 Mar; 151(2-3):407-13. PubMed ID: 17640800
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen sulfide production from ethion by bacteria in lagoonal sediments.
    Sherman JC; Nevin TA; Lasater JA
    Bull Environ Contam Toxicol; 1974 Sep; 12(3):359-65. PubMed ID: 4433881
    [No Abstract]   [Full Text] [Related]  

  • 8. [Role of the heterotrophic bacteria associated with the cyanobacterium Nostoc muscorum in cadmium sulfide synthesis].
    Moskvina MI; Brekhovskikh AA; Nikandrov VV
    Mikrobiologiia; 2003; 72(2):284-5. PubMed ID: 12751257
    [No Abstract]   [Full Text] [Related]  

  • 9. [Green photosynthetic bacteria isolated from the Sernoje lake].
    Trotsenko IuA
    Mikrobiologiia; 1966; 35(6):1087-93. PubMed ID: 6003011
    [No Abstract]   [Full Text] [Related]  

  • 10. Ethanol utilization by sulfate-reducing bacteria: an experimental and modeling study.
    Nagpal S; Chuichulcherm S; Livingston A; Peeva L
    Biotechnol Bioeng; 2000 Dec; 70(5):533-43. PubMed ID: 11042550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photosynthetic oxidation of MnS and FeS by Chlorobium spp.
    Borrego C; García-Gil J
    Microbiologia; 1995 Sep; 11(3):351-8. PubMed ID: 7576351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polysulfide reduction using sulfate-reducing bacteria in a photocatalytic hydrogen generation system.
    Takahashi Y; Suto K; Inoue C; Chida T
    J Biosci Bioeng; 2008 Sep; 106(3):219-25. PubMed ID: 18929995
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of hydraulic retention time and sulfide toxicity on ethanol and acetate oxidation in sulfate-reducing metal-precipitating fluidized-bed reactor.
    Kaksonen AH; Franzmann PD; Puhakka JA
    Biotechnol Bioeng; 2004 May; 86(3):332-43. PubMed ID: 15083513
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Microbiological processes of hydrogen sulfide oxidation in Lake Repnoe (Slavonic Lakes)].
    Gorlenko VM; Chebotarev EN; Kachalkin VI
    Mikrobiologiia; 1973; 42(4):723-8. PubMed ID: 4791163
    [No Abstract]   [Full Text] [Related]  

  • 15. Detection of volatile sulfide-producing bacteria isolated from poultry-processing plants.
    McMeekin TA; Gibbs PA; Patterson JT
    Appl Environ Microbiol; 1978 Jun; 35(6):1216-8. PubMed ID: 567037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulphide mining by the superextensile foot of symbiotic thyasirid bivalves.
    Dufour SC; Felbeck H
    Nature; 2003 Nov; 426(6962):65-7. PubMed ID: 14603317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen sulphide production by bacteria.
    CLARKE PH
    J Gen Microbiol; 1953 Jun; 8(3):397-407. PubMed ID: 13061742
    [No Abstract]   [Full Text] [Related]  

  • 18. Sulfide reduction in fellmongery effluent by red sulfur bacteria.
    Cooper DE; Rands MB; Woo CP
    J Water Pollut Control Fed; 1975 Aug; 47(8):2088-100. PubMed ID: 1177352
    [No Abstract]   [Full Text] [Related]  

  • 19. [Microbiological studies on the appearance of hydrogen sulfide in anaerobic areas of high moorlands].
    BENDA I
    Arch Mikrobiol; 1957; 27(4):337-74. PubMed ID: 13522143
    [No Abstract]   [Full Text] [Related]  

  • 20. Survival of hydrogen sulfide oxidizing bacteria on corroded concrete surfaces of sewer systems.
    Jensen HS; Nielsen AH; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2008; 57(11):1721-6. PubMed ID: 18547922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.