These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 512942)

  • 21. Relationships between disaccharide hydrolysis and sugar transport in amphibian small intestine.
    Parson DS; Prichard JS
    J Physiol; 1971 Jan; 212(2):299-319. PubMed ID: 5548008
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Kinetics of the sodium/beta-methyl-D-glucoside co-transport system in the guinea-pig small intestine.
    Robinson JW; Van Melle G
    J Physiol; 1983 Nov; 344():177-87. PubMed ID: 6655578
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phloretin-like action of bioflavonoids on sugar accumulation capability of isolated intestinal cells.
    Kimmich GA; Randles J
    Membr Biochem; 1978; 1(3-4):221-37. PubMed ID: 756489
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Basal-lateral transport and transcellular flux of methyl alpha-D-glucoside across LLC-PK1 renal epithelial cells.
    Mullin JM; Fluk L; Kleinzeller A
    Biochim Biophys Acta; 1986 Mar; 885(3):233-9. PubMed ID: 3081050
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of metabolic intermediates on sugar and amino acid uptake in rabbit renal tubules and brush border membranes.
    Kippen I; Klinenberg JR; Wright EM
    J Physiol; 1980 Jul; 304():373-87. PubMed ID: 7441540
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proceedings: Movement of sugars between compartments of vascularly perfused intestine.
    Boyd CA; Parsons DS
    J Physiol; 1976 Jun; 258(1):12P-13P. PubMed ID: 940048
    [No Abstract]   [Full Text] [Related]  

  • 27. Stimulation of neutral amino acid transport by fructose in epithelial cells isolated from rat intestine.
    Reiser S; Hallfrisch J
    J Nutr; 1977 May; 107(5):767-74. PubMed ID: 16101
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrophysiology of L-lysine entry across the brush-border membrane of Necturus intestine.
    Acevedo M; Armstrong WM
    Biochim Biophys Acta; 1987 Jan; 896(2):295-304. PubMed ID: 3099841
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Na dependence of monosaccharide absorption in isolated rabbit small intestine, perfused through lumen and vascular bed.
    Mothes T; Remke H; Müller F
    Pflugers Arch; 1981 Nov; 392(1):13-6. PubMed ID: 7322829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of L-leucine transport system in brush border membranes from human and rabbit small intestine.
    Iannoli P; Miller JH; Wang HT; Bode B; Souba WW; Avissar NE; Sax HC
    Metabolism; 1999 Nov; 48(11):1432-6. PubMed ID: 10582553
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A new class of inhibitors for in vitro small intestinal transport of sugars and amino acids in the rat.
    Elsenhans B; Blume R; Lembcke B; Caspary WF
    Biochim Biophys Acta; 1983 Jan; 727(1):135-43. PubMed ID: 6402011
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression of a differentiated transport function in apical membrane vesicles isolated from an established kidney epithelial cell line. Sodium electrochemical potential-mediated active sugar transport.
    Lever JE
    J Biol Chem; 1982 Aug; 257(15):8680-86. PubMed ID: 7096329
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Potassium movements associated with amino acid and sugar transport in enterocytes isolated from rabbit jejunum.
    Brown PD; Sepúlveda FV
    J Physiol; 1985 Jun; 363():271-85. PubMed ID: 3926992
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The transport of dipeptides by the small intestine.
    Cheeseman CI
    Can J Physiol Pharmacol; 1980 Nov; 58(11):1326-33. PubMed ID: 6971143
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Time course of the effect of growth hormone in vitro on amino acid and monosaccharide transport and on protein synthesis in diaphragm of young normal rats.
    Albertsson-Wikland K; Isaksson O
    Endocrinology; 1978 May; 102(5):1445-51. PubMed ID: 744032
    [No Abstract]   [Full Text] [Related]  

  • 36. Developmental patterns of intestinal transport mechanisms in the chick.
    Lerner J; Burrill PH; Sattelmeyer PA; Janicki CF
    Comp Biochem Physiol A Comp Physiol; 1976; 54(1):109-11. PubMed ID: 3330
    [No Abstract]   [Full Text] [Related]  

  • 37. The combined action of insulin and phlorizin on transport and metabolism of sugars and nucleotide turnover in the isolated rat diaphragm.
    Eboué-Bonis D; Clauser H
    Biochimie; 1977; 59(5-6):527-33. PubMed ID: 889936
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Glucose transport in intestinal epithelia of winter flounder.
    Thompson KA; Kleinzeller A
    Am J Physiol; 1985 May; 248(5 Pt 2):R573-7. PubMed ID: 3993816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. D-glucose and L-leucine transport by human intestinal brush-border membrane vesicles.
    Harig JM; Barry JA; Rajendran VM; Soergel KH; Ramaswamy K
    Am J Physiol; 1989 Mar; 256(3 Pt 1):G618-23. PubMed ID: 2923218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energetics of Na+-dependent sugar transport by isolated intestinal cells: evidence for a major role for membrane potentials.
    Kimmich GA; Carter-Su C; Randles J
    Am J Physiol; 1977 Nov; 233(5):E357-62. PubMed ID: 562624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.