These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 512974)

  • 1. Single unit activity in the mesencephalon of Sternarchus.
    Schlegel P
    J Physiol (Paris); 1979; 75(4):421-8. PubMed ID: 512974
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrosensory systems in the mormyrid fish, Gnathonemus petersii : special emphasis on the fast conducting pathway.
    Szabo T; Enger PS; Libouban S
    J Physiol (Paris); 1979; 75(4):409-20. PubMed ID: 512973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips.
    Zakon H; Oestreich J; Tallarovic S; Triefenbach F
    J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An electrotonically coupled pathway in the central nervous system of some teleost fish, Gymnotidae and Mormyridae.
    Szabo T; Sakata H; Ravaille M
    Brain Res; 1975 Sep; 95(2-3):459-74. PubMed ID: 168942
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Postsynaptic potentials in pacemaker cells: a correlation of behavior in command cells of an electric fish.
    Feng AS; Bullock TH
    J Neurobiol; 1978 Jul; 9(4):255-66. PubMed ID: 681925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal selectivity in midbrain electrosensory neurons identified by modal variation in active sensing.
    Pluta SR; Kawasaki M
    J Neurophysiol; 2010 Jul; 104(1):498-507. PubMed ID: 20505132
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia.
    Heiligenberg W; Rose G
    J Neurosci; 1985 Feb; 5(2):515-31. PubMed ID: 3973680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Representation of accurate temporal information in the electrosensory system of the African electric fish, Gymnarchus niloticus.
    Guo YX; Kawasaki M
    J Neurosci; 1997 Mar; 17(5):1761-8. PubMed ID: 9030634
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Global electrosensory oscillations enhance directional responses of midbrain neurons in eigenmannia.
    Ramcharitar JU; Tan EW; Fortune ES
    J Neurophysiol; 2006 Nov; 96(5):2319-26. PubMed ID: 16790600
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish.
    Bell CC; Libouban S; Szabo T
    J Comp Neurol; 1983 May; 216(3):327-38. PubMed ID: 6306068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The slow pathway in the electrosensory lobe of Gymnotus omarorum: field potentials and unitary activity.
    Pereira AC; Rodríguez-Cattáneo A; Caputi AA
    J Physiol Paris; 2014; 108(2-3):71-83. PubMed ID: 25088503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroreceptive single units in the mesencephalic magnocellular nucleus of the weakly electric fish Gymnotus carapo.
    Schlegel PA
    Exp Brain Res; 1977 Aug; 29(2):201-18. PubMed ID: 199450
    [No Abstract]   [Full Text] [Related]  

  • 15. Emergence of temporal-pattern sensitive neurons in the midbrain of weakly electric fish Gymnarchus niloticus.
    Kawasaki M; Guo YX
    J Physiol Paris; 2002; 96(5-6):531-7. PubMed ID: 14692500
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways.
    Metzner W
    J Neurosci; 1993 May; 13(5):1862-78. PubMed ID: 8478680
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial aspects of electrolocation in the mormyrid fish, Gnathonemus petersii.
    Push S; Moller P
    J Physiol (Paris); 1979; 75(4):355-7. PubMed ID: 512970
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 'Ancestral' neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response.
    Rose G; Keller C; Heiligenberg W
    J Comp Physiol A; 1987 Apr; 160(4):491-500. PubMed ID: 3598922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electric signaling behavior and the mechanisms of electric organ discharge production in mormyrid fish.
    Carlson BA
    J Physiol Paris; 2002; 96(5-6):405-19. PubMed ID: 14692489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Androgen modulates the kinetics of the delayed rectifying K+ current in the electric organ of a weakly electric fish.
    McAnelly ML; Zakon HH
    Dev Neurobiol; 2007 Oct; 67(12):1589-97. PubMed ID: 17562532
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.