These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

52 related articles for article (PubMed ID: 5130602)

  • 1. Temporal specificity in human auditory conditioning by frequency-modulated tones.
    Kay RH; Matthews DR
    J Physiol; 1971 Oct; 218 Suppl():104P-106P. PubMed ID: 5130602
    [No Abstract]   [Full Text] [Related]  

  • 2. Proceedings: The adequate stimuli for channels in the human auditory pathways concerned with the modulation present in frequency-modulated tones.
    Green GG; Kay RH
    J Physiol; 1973 Oct; 234(2):50P-52P. PubMed ID: 4767063
    [No Abstract]   [Full Text] [Related]  

  • 3. [The discrimination of frequency-modulated signals under free behavior conditions in cats].
    Kalmykova IV
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1990; 40(3):451-5. PubMed ID: 2169150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stimulus control of heart rate by auditory frequency and auditory pattern in pigeons.
    Delius JD; Tarpy RM
    J Exp Anal Behav; 1974 Mar; 21(2):297-306. PubMed ID: 4815397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuromagnetic auditory steady-state responses to amplitude modulated sounds following dichotic or monaural presentation.
    Lazzouni L; Ross B; Voss P; Lepore F
    Clin Neurophysiol; 2010 Feb; 121(2):200-7. PubMed ID: 20005163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Separate auditory channels for unidirectional frequency modulation and unidirectional amplitude modulation.
    Tansley BW; Regan D
    Sens Processes; 1979 Jun; 3(2):132-40. PubMed ID: 545699
    [No Abstract]   [Full Text] [Related]  

  • 7. Separate contributions of enhanced and suppressed sensitivity to the auditory attentional filter.
    Tan MN; Robertson D; Hammond GR
    Hear Res; 2008 Jul; 241(1-2):18-25. PubMed ID: 18524512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The perception of complex signals by cats under free behavioral conditions].
    Kalmykova IV
    Fiziol Zh SSSR Im I M Sechenova; 1989 Sep; 75(9):1194-9. PubMed ID: 2599130
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Some characteristics of human perception of amplitude-modulated signals].
    Tumarkina LN; DubrovskiÄ­ NA
    Biofizika; 1966; 11(4):653-8. PubMed ID: 6000624
    [No Abstract]   [Full Text] [Related]  

  • 10. Assessment of auditory temporal-order thresholds - a comparison of different measurement procedures and the influences of age and gender.
    Fink M; Churan J; Wittmann M
    Restor Neurol Neurosci; 2005; 23(5-6):281-96. PubMed ID: 16477090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of neuronal mechanisms of conditioning and memory: comparison of species specific calls and pure tones as the acoustic CS.
    Vassilevskij NN
    Act Nerv Super (Praha); 1976 Jun; 18(1-2):60-1. PubMed ID: 941655
    [No Abstract]   [Full Text] [Related]  

  • 12. Auditory streaming of amplitude-modulated sounds in the songbird forebrain.
    Itatani N; Klump GM
    J Neurophysiol; 2009 Jun; 101(6):3212-25. PubMed ID: 19357341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Discrimination of signals simulating movement of a sound source by dogs after ablation of the auditory cortex].
    Baru AV; Kalmykova IV; Shmigidina GN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1985; 35(5):842-8. PubMed ID: 4072400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferior colliculus responses to multichannel microstimulation of the ventral cochlear nucleus: implications for auditory brain stem implants.
    Shivdasani MN; Mauger SJ; Rathbone GD; Paolini AG
    J Neurophysiol; 2008 Jan; 99(1):1-13. PubMed ID: 17928560
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perceptual consequences of disrupted auditory nerve activity.
    Zeng FG; Kong YY; Michalewski HJ; Starr A
    J Neurophysiol; 2005 Jun; 93(6):3050-63. PubMed ID: 15615831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Carrier-dependent temporal processing in an auditory interneuron.
    Sabourin P; Gottlieb H; Pollack GS
    J Acoust Soc Am; 2008 May; 123(5):2910-7. PubMed ID: 18529207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a unifying basis of auditory thresholds: distributions of the first-spike latencies of auditory-nerve fibers.
    Heil P; Neubauer H; Brown M; Irvine DR
    Hear Res; 2008 Apr; 238(1-2):25-38. PubMed ID: 18077116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Temporal coding by populations of auditory receptor neurons.
    Sabourin P; Pollack GS
    J Neurophysiol; 2010 Mar; 103(3):1614-21. PubMed ID: 20071632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Auditory evoked potentials and acoustically-directed behavior of nestlings].
    Khaiutin SN; Dmitrieva LP
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1982; 32(3):520-30. PubMed ID: 7113453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Progress in the physiology of hearing at the I. P. Pavlov Institute of Physiology of the USSR Academy of Sciences].
    Al'tman IaA
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1975; 25(6):1141-9. PubMed ID: 1210767
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.