These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
217 related articles for article (PubMed ID: 5131015)
1. Oximes, nitriles and 2-hydroxynitriles as precursors in the biosynthesis of cyanogenic glucosides. Tapper BA; Butler GW Biochem J; 1971 Oct; 124(5):935-41. PubMed ID: 5131015 [TBL] [Abstract][Full Text] [Related]
2. Conversion of nitriles and alpha-hydroxynitriles to cyanogenic glucosides in flax seedlings and cherry laurel leaves. Hahlbrock K; Tapper BA; Butler GW; Conn EE Arch Biochem Biophys; 1968 Jun; 125(3):1013-6. PubMed ID: 5677586 [No Abstract] [Full Text] [Related]
3. Biosynthesis of cyanogenic glycosides. Conn EE Biochem Soc Symp; 1973; (38):277-302. PubMed ID: 4620367 [No Abstract] [Full Text] [Related]
4. Biosynthesis of cyanogenic glycosides. Conn EE Naturwissenschaften; 1979 Jan; 66(1):28-34. PubMed ID: 423994 [TBL] [Abstract][Full Text] [Related]
5. Conversion of alpha-keto-isovaleric acid oxime and isobutyraldoxime to linamarin in flax seedlings. Tapper BA; Conn EE; Butler GW Arch Biochem Biophys; 1967 Mar; 119(1):593-5. PubMed ID: 6059220 [No Abstract] [Full Text] [Related]
6. BIOSYNTHESIS OF THE CYANOGENIC GLUCOSIDES LINAMARIN AND LOTAUSTRALIN. I. LABELING STUDIES IN VIVO WITH LINUM USITATISSIMUM. BUTLER GW; CONN EE J Biol Chem; 1964 Jun; 239():1674-9. PubMed ID: 14213333 [No Abstract] [Full Text] [Related]
7. The origin of the glucosidic linkage oxygen of the cyanogenic glucosides, linamarin and lotaustralin. Zilg H; Tapper BA; Conn EE J Biol Chem; 1972 Apr; 247(8):2384-6. PubMed ID: 5019952 [No Abstract] [Full Text] [Related]
8. Cyanogenesis and the role of cyanogenic compounds in insects. Nahrstedt A Ciba Found Symp; 1988; 140():131-50. PubMed ID: 3073053 [TBL] [Abstract][Full Text] [Related]
9. Biosynthesis of rhodiocyanosides in Lotus japonicus: rhodiocyanoside A is synthesized from (Z)-2-methylbutanaloxime via 2-methyl-2-butenenitrile. Saito S; Motawia MS; Olsen CE; Møller BL; Bak S Phytochemistry; 2012 May; 77():260-7. PubMed ID: 22385904 [TBL] [Abstract][Full Text] [Related]
10. Biosynthesis of mustard oil glucosides: conversion of phenylacetaldehyde oxime and 3-phenylpropionaldehyde oxime to glucotropaeolin and gluconasturtiin. Underhill EW Eur J Biochem; 1967 Jul; 2(1):61-3. PubMed ID: 6082608 [No Abstract] [Full Text] [Related]
11. Biosynthesis of the cyanogenic glucosides linamarin and lotaustralin in cassava: isolation, biochemical characterization, and expression pattern of CYP71E7, the oxime-metabolizing cytochrome P450 enzyme. Jørgensen K; Morant AV; Morant M; Jensen NB; Olsen CE; Kannangara R; Motawia MS; Møller BL; Bak S Plant Physiol; 2011 Jan; 155(1):282-92. PubMed ID: 21045121 [TBL] [Abstract][Full Text] [Related]
12. The biosynthesis of cyanogenic glucosides in Linum usitatissimum (linen flax) in vitro. Cutler AJ; Conn EE Arch Biochem Biophys; 1981 Dec; 212(2):468-74. PubMed ID: 7325672 [No Abstract] [Full Text] [Related]
13. Biosynthesis of the nitrile glucosides rhodiocyanoside A and D and the cyanogenic glucosides lotaustralin and linamarin in Lotus japonicus. Forslund K; Morant M; Jørgensen B; Olsen CE; Asamizu E; Sato S; Tabata S; Bak S Plant Physiol; 2004 May; 135(1):71-84. PubMed ID: 15122013 [TBL] [Abstract][Full Text] [Related]
14. Properties of a microsomal enzyme system from Linum usitatissimum (linen flax) which oxidizes valine to acetone cyanohydrin and isoleucine to 2-methylbutanone cyanohydrin. Cutler AJ; Sternberg M; Conn EE Arch Biochem Biophys; 1985 Apr; 238(1):272-9. PubMed ID: 3985623 [TBL] [Abstract][Full Text] [Related]
15. Cyanogenic glucosides: the biosynthetic pathway and the enzyme system involved. Halkier BA; Scheller HV; Møller BL Ciba Found Symp; 1988; 140():49-66. PubMed ID: 3073062 [TBL] [Abstract][Full Text] [Related]
16. The biosynthesis of cyanogenic glucosides in higher plants. Channeling of intermediates in dhurrin biosynthesis by a microsomal system from Sorghum bicolor (linn) Moench. Møller BL; Conn EE J Biol Chem; 1980 Apr; 255(7):3049-56. PubMed ID: 7358727 [TBL] [Abstract][Full Text] [Related]
17. The biosynthesis of cyanogenic glucosides in higher plants. The (E)- and (Z)-isomers of p-hydroxyphenylacetaldehyde oxime as intermediates in the biosynthesis of dhurrin in Sorghum bicolor (L.) Moench. Halkier BA; Olsen CE; Møller BL J Biol Chem; 1989 Nov; 264(33):19487-94. PubMed ID: 2684955 [TBL] [Abstract][Full Text] [Related]
18. The biosynthesis of cyanogenic glucosides in higher plants. N-Hydroxytyrosine as an intermediate in the biosynthesis of dhurrin by Sorghum bicolor (Linn) Moench. Møller BL; Conn EE J Biol Chem; 1979 Sep; 254(17):8575-83. PubMed ID: 468842 [TBL] [Abstract][Full Text] [Related]
19. Cytochromes P-450 from cassava (Manihot esculenta Crantz) catalyzing the first steps in the biosynthesis of the cyanogenic glucosides linamarin and lotaustralin. Cloning, functional expression in Pichia pastoris, and substrate specificity of the isolated recombinant enzymes. Andersen MD; Busk PK; Svendsen I; Møller BL J Biol Chem; 2000 Jan; 275(3):1966-75. PubMed ID: 10636899 [TBL] [Abstract][Full Text] [Related]
20. Origin of cyanide in cultures of a psychrophilic basidiomycete. Stevens DL; Strobel GA J Bacteriol; 1968 Mar; 95(3):1094-102. PubMed ID: 5651322 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]