These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 5132468)
81. Uncoupling of photophosphorylation inhibition of proton binding by quaternary ammonium salts and zwitterionic buffers. Gross E Arch Biochem Biophys; 1971 Nov; 147(1):77-84. PubMed ID: 5114941 [No Abstract] [Full Text] [Related]
82. Effect of cyanide on respiratory control of electron transporting particles. Hunter DR Biochem Biophys Res Commun; 1974 Apr; 57(4):1063-8. PubMed ID: 4151531 [No Abstract] [Full Text] [Related]
83. The effect of glutaraldehyde on light-induced H+ changes, electron transport, and phosphorylation in pea chloroplasts. West J; Packer L J Bioenerg; 1970 Oct; 1(4):405-12. PubMed ID: 5005955 [No Abstract] [Full Text] [Related]
84. Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of pH in chloroplasts. Schuldiner S; Rottenberg H; Avron M Eur J Biochem; 1972 Jan; 25(1):64-70. PubMed ID: 5023581 [No Abstract] [Full Text] [Related]
85. The influence of cytochrome b 559 on the fluorescence yield of chloroplasts at low temperature. Okayama S; Butler WL Biochim Biophys Acta; 1972 Jun; 267(3):523-9. PubMed ID: 5047135 [No Abstract] [Full Text] [Related]
86. Inhibitory effect of parathion on the photosynthetic electron transport system in isolated spinach chloroplasts. Suzuki T; Uchiyama M Bull Environ Contam Toxicol; 1975 Nov; 14(5):552-7. PubMed ID: 1128 [No Abstract] [Full Text] [Related]
87. Pigment systems and electron transport in chloroplasts. II. Emerson enhancement in broken spinach chloroplasts. Sun AS; Sauer K Biochim Biophys Acta; 1972 Feb; 256(2):400-27. PubMed ID: 4401425 [No Abstract] [Full Text] [Related]
88. Diaminodurene-induced plastocyanin dependent oxygen uptake and its relation to photophosphorylation in isolated lettuce chloroplasts. A comparison of the systems using either water or ascorbate as the electron donors. Gromet-Elhanan Z; Redlich N Eur J Biochem; 1970 Dec; 17(3):523-8. PubMed ID: 5493981 [No Abstract] [Full Text] [Related]
89. Enhancement of photophosphorylation and photoreduction by a chloroplast factor from spinach leaves. Gee R; Kylin A; Saltman P Biochem Biophys Res Commun; 1970 Aug; 40(3):642-8. PubMed ID: 5492160 [No Abstract] [Full Text] [Related]
90. [Effect of oxygen on electron transfers in photosynthesis. II. Effect of very low oxygen concentrations on the reduction of NADP+ by isolated chloroplasts]. Mathieu Y Biochim Biophys Acta; 1969; 189(3):422-8. PubMed ID: 4391419 [No Abstract] [Full Text] [Related]
91. The adjustment of photosynthetically grown cells of Rhodospirillum rubrum to aerobic light conditions. Oelze J; Weaver P Arch Mikrobiol; 1971; 79(2):108-21. PubMed ID: 4331367 [No Abstract] [Full Text] [Related]
92. Phosphorylation by intact bundle sheath chloroplasts from maize. Anderson JM; Boardman NK; Spencer D Biochim Biophys Acta; 1971 Aug; 245(1):253-8. PubMed ID: 4943648 [No Abstract] [Full Text] [Related]
93. Mechanisms of active transport in isolated bacterial membrane vesicles. 18. The mechanism of action of carbonylcyanide m-chlorophenylhydrazone. Kaback HR; Reeves JP; Short SA; Lombardi FJ Arch Biochem Biophys; 1974 Jan; 160(1):215-22. PubMed ID: 4597558 [No Abstract] [Full Text] [Related]
94. Lipophilicity and catalysis of photophosphorylation. II. Quinoid compounds as artificial carriers in cyclic photophosphorylation and photoreductions by photosystem I. Hauska G; Trebst A; Draber W Biochim Biophys Acta; 1973 Jun; 305(3):632-41. PubMed ID: 4733690 [No Abstract] [Full Text] [Related]
95. Ethyl red as a probe into the mechanism of light-driven proton translocation by isolated chloroplasts. I. The spectral shift of ethyl red and membrane conformational changes. Heath RL Biochim Biophys Acta; 1973 Feb; 292(2):444-58. PubMed ID: 4703081 [No Abstract] [Full Text] [Related]
96. The dependence of photophosphorylation in chloroplasts on delta pH and external pH. Pick U; Rottenberg H; Avron M FEBS Lett; 1974 Nov; 48(1):32-6. PubMed ID: 4430371 [No Abstract] [Full Text] [Related]
97. Energy transduction in photosynthetic bacteria. IV. Light-dependent ATPase in photosynthetic membranes from Rhodopseudomonas capsulata. Melandri BA; Baccarini-Melandri A; Fabbri E Biochim Biophys Acta; 1972 Sep; 275(3):383-94. PubMed ID: 4262690 [No Abstract] [Full Text] [Related]
98. The primary electron acceptor in photosynthesis. Leigh JS; Dutton PL Biochem Biophys Res Commun; 1972 Jan; 46(2):414-21. PubMed ID: 4333415 [No Abstract] [Full Text] [Related]
99. Photosynthetic phosphorylation in Chlamydomonas reinhardi. Effects of a mutation altering and ATP-synthesizing enzyme. Sato VL; Levine RP; Neumann J Biochim Biophys Acta; 1971 Dec; 253(2):437-48. PubMed ID: 4399948 [No Abstract] [Full Text] [Related]
100. The kinetics of the pH rise in illuminated chloroplast suspensions. Izawa S; Hind G Biochim Biophys Acta; 1967 Sep; 143(2):377-90. PubMed ID: 6049955 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]