These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 5133090)

  • 21. Photoisomerization efficiency in UV-absorbing visual pigments: protein-directed isomerization of an unprotonated retinal Schiff base.
    Tsutsui K; Imai H; Shichida Y
    Biochemistry; 2007 May; 46(21):6437-45. PubMed ID: 17474760
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Visual pigments. 3. Determination and interpretation of the fluorescence quantum yields of retinals, Schiff bases, and protonated Schiff bases.
    Waddell WH; Schaffer AM; Becker RS
    J Am Chem Soc; 1973 Dec; 95(25):8223-7. PubMed ID: 4773241
    [No Abstract]   [Full Text] [Related]  

  • 24. Resonance Raman studies of the primary photochemical event in visual pigments.
    Aton B; Doukas AG; Narva D; Callender RH; Dinur U; Honig B
    Biophys J; 1980 Jan; 29(1):79-94. PubMed ID: 7260248
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spectral regression and correlation coefficients of some benzaldimines and salicylaldimines in different solvents.
    Hammud HH; Ghannoum A; Masoud MS
    Spectrochim Acta A Mol Biomol Spectrosc; 2006 Feb; 63(2):255-65. PubMed ID: 16406786
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Absorption studies of neutral retinal Schiff base chromophores.
    Nielsen IB; Petersen MA; Lammich L; Nielsen MB; Andersen LH
    J Phys Chem A; 2006 Nov; 110(46):12592-6. PubMed ID: 17107108
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Resonance Raman studies of visual pigments.
    Callender R
    Annu Rev Biophys Bioeng; 1977; 6():33-55. PubMed ID: 326149
    [No Abstract]   [Full Text] [Related]  

  • 28. Proceedings: Visual pigments and photoreceptors--review and outlook.
    Wald G
    Exp Eye Res; 1974 Mar; 18(3):333-43. PubMed ID: 4601014
    [No Abstract]   [Full Text] [Related]  

  • 29. A resonance Raman study of the C=N configurations of octopus rhodopsin, bathorhodopsin, and isorhodopsin.
    Huang L; Deng H; Weng G; Koutalos Y; Ebrey T; Groesbeek M; Lugtenburg J; Tsuda M; Callender RH
    Biochemistry; 1996 Jul; 35(26):8504-10. PubMed ID: 8679611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The pKa of the protonated Schiff bases of gecko cone and octopus visual pigments.
    Liang J; Steinberg G; Livnah N; Sheves M; Ebrey TG; Tsuda M
    Biophys J; 1994 Aug; 67(2):848-54. PubMed ID: 7948697
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein.
    Longstaff C; Calhoon RD; Rando RR
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4209-13. PubMed ID: 3012559
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fourier-transform infrared spectroscopy applied to rhodopsin. The problem of the protonation state of the retinylidene Schiff base re-investigated.
    Siebert F; Mäntele W; Gerwert K
    Eur J Biochem; 1983 Oct; 136(1):119-27. PubMed ID: 6311543
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resonance Raman spectroscopy of squid and bovine visual pigments: the primary photochemistry in visual transduction.
    Sulkes M; Lewis A; Marcus MA
    Biochemistry; 1978 Oct; 17(22):4712-22. PubMed ID: 728380
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The structure of visual pigments. I. Carbon-13 nuclear magnetic resonance spectroscopy of N-all-trans-retinylidenepropylimine and its protonated species.
    Shriver J; Abrahamson EW; Mateescu GD
    J Am Chem Soc; 1976 Apr; 98(9):2407-9. PubMed ID: 1262656
    [No Abstract]   [Full Text] [Related]  

  • 35. Conversion of a photon to an electrical signal by sudden polarisation in the N-retinylidene visual chromophore.
    Salem L; Bruckmann P
    Nature; 1975 Dec; 258(5535):526-8. PubMed ID: 1196385
    [No Abstract]   [Full Text] [Related]  

  • 36. What makes red visual pigments red? A resonance Raman microprobe study of retinal chromophore structure in iodopsin.
    Lin SW; Imamoto Y; Fukada Y; Shichida Y; Yoshizawa T; Mathies RA
    Biochemistry; 1994 Mar; 33(8):2151-60. PubMed ID: 8117671
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Induced optical activity in rhodopsin analogs.
    Johnston EM; Zand R
    Biochem Biophys Res Commun; 1972 May; 47(4):712-9. PubMed ID: 5026291
    [No Abstract]   [Full Text] [Related]  

  • 38. Raman microscope and quantum yield studies on the primary photochemistry of A2-visual pigments.
    Barry B; Mathies RA; Pardoen JA; Lugtenburg J
    Biophys J; 1987 Oct; 52(4):603-10. PubMed ID: 3676440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bicycle-pedal model for the first step in the vision process.
    Warshel A
    Nature; 1976 Apr; 260(5553):679-83. PubMed ID: 1264239
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ultraviolet chromophore transitions in the rhodopsin spectrum.
    Ebrey TG; Honig B
    Proc Natl Acad Sci U S A; 1972 Jul; 69(7):1897-9. PubMed ID: 4505668
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.