BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 5134211)

  • 1. Effects of viscosity and constraints on the dispersion and dissipation of waves in large blood vessels. II. Comparison of analysis with experiments.
    Jones E; Anliker M; Chang ID
    Biophys J; 1971 Dec; 11(12):1121-36. PubMed ID: 5134211
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of viscosty and constraints on the dispersion and dissipation of waves in large blood vessels. I. Theoretical analysis.
    Jones E; Anliker M; Chang ID
    Biophys J; 1971 Dec; 11(12):1085-120. PubMed ID: 5134210
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The dissipation and dispersion of small waves in arteries and veins with viscoelastic wall properties.
    Maxwell JA; Anliker M
    Biophys J; 1968 Aug; 8(8):920-50. PubMed ID: 5661901
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy dissipation and pulse wave attenuation in the canine carotid artery.
    Bertram CD
    J Biomech; 1980; 13(12):1061-73. PubMed ID: 7204422
    [No Abstract]   [Full Text] [Related]  

  • 5. Transmission characteristics of axial waves in blood vessels.
    Anliker M; Moritz WE; Ogden E
    J Biomech; 1968 Dec; 1(4):235-46. PubMed ID: 16329428
    [No Abstract]   [Full Text] [Related]  

  • 6. On the accuracy of displacement-based wave intensity analysis: Effect of vessel wall viscoelasticity and nonlinearity.
    Kang J; Aghilinejad A; Pahlevan NM
    PLoS One; 2019; 14(11):e0224390. PubMed ID: 31675382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The relation between arterial viscoelasticity and wave propagation in the canine femoral artery in vivo.
    Milnor WR; Bertram CD
    Circ Res; 1978 Dec; 43(6):870-9. PubMed ID: 709749
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative study of viscoelastic arterial wall models in nonlinear one-dimensional finite element simulations of blood flow.
    Raghu R; Vignon-Clementel IE; Figueroa CA; Taylor CA
    J Biomech Eng; 2011 Aug; 133(8):081003. PubMed ID: 21950896
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wave propagation through a newtonian fluid contained within a thick-walled, viscoelastic tube.
    Ox RH
    Biophys J; 1968 Jun; 8(6):691-709. PubMed ID: 5699803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of blood viscoelasticity on pulsatile flow in stationary and axially moving tubes.
    Sharp MK; Thurston GB; Moore JE
    Biorheology; 1996; 33(3):185-208. PubMed ID: 8935179
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Wave transmission characteristics and anisotropy of canine carotid arteries.
    Moritz WE; Anliker M
    J Biomech; 1974 Mar; 7(2):151-4. PubMed ID: 4837550
    [No Abstract]   [Full Text] [Related]  

  • 13. An experimental comparison of different methods of measuring wave propagation in viscoelastic tubes.
    Ursino M; Artioli E; Gallerani M
    J Biomech; 1994 Jul; 27(7):979-90. PubMed ID: 8063848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A viscoelastic model for use in predicting arterial pulse waves.
    Holenstein R; Niederer P; Anliker M
    J Biomech Eng; 1980 Nov; 102(4):318-25. PubMed ID: 6965195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linear and nonlinear viscoelastic modeling of aorta and carotid pressure-area dynamics under in vivo and ex vivo conditions.
    Valdez-Jasso D; Bia D; Zócalo Y; Armentano RL; Haider MA; Olufsen MS
    Ann Biomed Eng; 2011 May; 39(5):1438-56. PubMed ID: 21203846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fractional-order viscoelasticity in one-dimensional blood flow models.
    Perdikaris P; Karniadakis GE
    Ann Biomed Eng; 2014 May; 42(5):1012-23. PubMed ID: 24414838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A viscoelastic fluid-structure interaction model for carotid arteries under pulsatile flow.
    Wang Z; Wood NB; Xu XY
    Int J Numer Method Biomed Eng; 2015 May; 31(5):e02709. PubMed ID: 25630788
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Active and passive properties of carotid arteries].
    Kisliakov IuI
    Biofizika; 1975; 20(3):511-4. PubMed ID: 1138962
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new method of measuring propagation coefficients and characteristic impedance in blood vessels.
    Milnor WR; Nichols WW
    Circ Res; 1975 May; 36(5):631-9. PubMed ID: 1091370
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental results.
    Saito M; Ikenaga Y; Matsukawa M; Watanabe Y; Asada T; Lagrée PY
    J Biomech Eng; 2011 Dec; 133(12):121005. PubMed ID: 22206422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.