These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 5137336)
1. The inhibition of mitochondrial energized processes by fluorescein mercuric acetate. Lee MJ; Harris RA; Wakabayashi T; Green DE J Bioenerg; 1971 Feb; 2(1):13-31. PubMed ID: 5137336 [No Abstract] [Full Text] [Related]
2. Action of fluorescein mercuric acetate upon mitochondrial energized processes. Lee MJ; Harris RA; Green DE Biochem Biophys Res Commun; 1969 Sep; 36(6):937-46. PubMed ID: 5344725 [No Abstract] [Full Text] [Related]
3. Induction of transmembrane proton transfer by mercurials in mitochondria. I. Ion movements accompanying transmembrane proton transfer. Southard JH; Penniston JT; Green DE J Biol Chem; 1973 May; 248(10):3546-50. PubMed ID: 4702876 [No Abstract] [Full Text] [Related]
4. Induction of transmembrane proton transfer by mercurials in mitochondria. II. Release of a Na+-K+ ionophore. Southard JH; Blondin GA; Green DE J Biol Chem; 1974 Feb; 249(3):678-81. PubMed ID: 4130102 [No Abstract] [Full Text] [Related]
5. Control of the energy coupling modes in mitochondria by mercurials. Southard JH; Green DE Biochem Biophys Res Commun; 1974 Dec; 61(4):1310-6. PubMed ID: 4477015 [No Abstract] [Full Text] [Related]
6. Ion transport by heart mitochondria. XXII. Spontaneous, energy-linked accumulation of acetate and phosphate salts of monovalent cations. Brierley GP; Jurkowitz M; Scott KM; Merola AJ Arch Biochem Biophys; 1971 Dec; 147(2):545-56. PubMed ID: 5136102 [No Abstract] [Full Text] [Related]
7. Effect of phospholipases on the structure and function of mitochondria. Burstein C; Loyter A; Racker E J Biol Chem; 1971 Jun; 246(12):4075-82. PubMed ID: 4104710 [No Abstract] [Full Text] [Related]
8. Inhibition of respiration in submitochondrial particles by uncouplers of oxidative phosphorylation. Beyer RE; MacDonald JE Arch Biochem Biophys; 1970 Mar; 137(1):38-50. PubMed ID: 4314056 [No Abstract] [Full Text] [Related]
9. Activation of energy-linked K+ accumulation in isolated heart mitochondria by non-ionic detergents. Brierley GP; Jurkowitz M; Scott KM; Hwang KM; Merola AJ Biochem Biophys Res Commun; 1971 Apr; 43(1):50-7. PubMed ID: 4252962 [No Abstract] [Full Text] [Related]
10. Studies on oxidative phosphorylation. XIX. Functional site of factor B in energy transfer reactions. Lam KW; Yang SS Arch Biochem Biophys; 1969 Sep; 133(2):366-72. PubMed ID: 4309592 [No Abstract] [Full Text] [Related]
11. Control of mitochondrial swelling by mg2+. The relation of ion transport to structural changes. Dow DS; Walton KG; Fleischer S J Bioenerg; 1971 Sep; 1(3):247-71. PubMed ID: 5002678 [No Abstract] [Full Text] [Related]
12. Energy-linked ion translocation in submitochondrial particles. II. Properties of submitochondrial particles capable of Ca++ translocation. Christiansen RO; Steensland H; Loyter A; Saltzgaber J; Racker E J Biol Chem; 1969 Aug; 244(16):4428-36. PubMed ID: 4185156 [No Abstract] [Full Text] [Related]
13. Menadiol as an electron donor for reversed oxidative phosphorylation in submitochondrial particles. Taggart WV; Sanadi DR Biochim Biophys Acta; 1972 Jun; 267(3):439-43. PubMed ID: 4340058 [No Abstract] [Full Text] [Related]
14. Inhibition of oxidative phosphorylation by hydroxylamine in sonicated particles from beef-heart mitochondria. Wikström MK Biochim Biophys Acta; 1971 Apr; 234(1):16-27. PubMed ID: 4327077 [No Abstract] [Full Text] [Related]
15. Ion transport by heart mitochondria. XXI. Differential effects of mercurial reagents on adenosine triphosphatase activity and on adenosine triphosphate-dependent swelling and contraction. Brierley GP; Scott KM; Jurkowitz M J Biol Chem; 1971 Apr; 246(7):2241-51. PubMed ID: 4252222 [No Abstract] [Full Text] [Related]
16. The effect of succinate, malonate and fumarate on the phosphorylating system of the submitochondrial particles. Kupriyanov VV; Saks VA FEBS Lett; 1972 Jul; 24(1):131-3. PubMed ID: 4263927 [No Abstract] [Full Text] [Related]
17. Studies on the stabilization of an oxidative phosphorylation system. I. Resistance of a phosphorylating system of submitochondrial particles to trypsin, due to phosphorylation of ADP. Luzikov VN; Saks VA; Kupriyanov VV Biochim Biophys Acta; 1971 Nov; 253(1):46-57. PubMed ID: 4331272 [No Abstract] [Full Text] [Related]
18. Ion transport by heart mitochondria. Retention and loss of energy coupling in aged heart mitochondria. Jurkowitz M; Scott KM; Altschuld RA; Merola AJ; Brierley GP Arch Biochem Biophys; 1974 Nov; 165(1):98-113. PubMed ID: 4280266 [No Abstract] [Full Text] [Related]
19. The mechanism of mitochondrial swelling. IV. Configurational changes during swelling of beef heart mitochondria. Asai J; Blondin GA; Vail WJ; Green DE Arch Biochem Biophys; 1969 Jul; 132(2):524-44. PubMed ID: 5797338 [No Abstract] [Full Text] [Related]
20. Comparison of rates of proton ejection and oxygen consumption within 300 msec after oxygenation of beef heart mitochondria. Penniston JT Biochemistry; 1973 Feb; 12(4):650-5. PubMed ID: 4691510 [No Abstract] [Full Text] [Related] [Next] [New Search]