These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 5137580)

  • 21. A bacitracin-negative mutant of Bacillus licheniformis which is able to sporulate.
    Haavik HI; Thomassen S
    J Gen Microbiol; 1973 Jun; 76(2):451-4. PubMed ID: 4198717
    [No Abstract]   [Full Text] [Related]  

  • 22. Minimal requirements for commitment to sporulation in Bacillus megaterium.
    Greene RA; Slepecky RA
    J Bacteriol; 1972 Aug; 111(2):557-65. PubMed ID: 4626503
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiology of sporeforming bacteria associated with insects: minimal nutritional requirements for growth, sporulation, and parasporal crystal formation of Bacillus thuringiensis.
    Nickerson KW; Bulla LA
    Appl Microbiol; 1974 Jul; 28(1):124-8. PubMed ID: 4844274
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lipid metabolism during bacterial growth, sporulation, and germination: kinetics of fatty acid and macromolecular synthesis during spore germination and outgrowth of Bacillus thuringiensis.
    Nickerson KW; De Pinto J; Bulla LA
    J Bacteriol; 1975 Jan; 121(1):227-33. PubMed ID: 1116987
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of the tricarboxylate cycle and its interactions with glycolysis during acetate utilization in rat heart.
    Randle PJ; England PJ; Denton RM
    Biochem J; 1970 May; 117(4):677-95. PubMed ID: 5449122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxidation of nicotinic acid by a Bacillus species: regulation of nicotinic acid and 6-hydroxynicotinic acid hydroxylases.
    Hirschberg R; Ensign JC
    J Bacteriol; 1972 Oct; 112(1):392-7. PubMed ID: 5079068
    [TBL] [Abstract][Full Text] [Related]  

  • 27. THE METABOLISM OF ACETATE BY WHEAT STEM RUST UREDOSPORES.
    SURYANARAYANAN S; MCCONNELL WB
    Can J Biochem; 1964 Jun; 42():883-8. PubMed ID: 14196176
    [No Abstract]   [Full Text] [Related]  

  • 28. Growth of Escherichia coli on short-chain fatty acids: growth characteristics of mutants.
    Salanitro JP; Wegener WS
    J Bacteriol; 1971 Nov; 108(2):885-92. PubMed ID: 4942768
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Reisolation and growth conditions of bacillus agar-exedens.
    Hunger W; Claus D
    Antonie Van Leeuwenhoek; 1978; 44(1):105-13. PubMed ID: 26308
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative studies of the mosquito-larval toxin of Bacillus sphaericus SSII-1 and 1593.
    Myers P; Yousten AA; Davidson EW
    Can J Microbiol; 1979 Nov; 25(11):1227-31. PubMed ID: 540250
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acid-soluble nucleotides in an asporogenous mutant of Bacillus subtilis.
    Chow CT; Takahashi I
    J Bacteriol; 1972 Mar; 109(3):1175-80. PubMed ID: 4622128
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sporulation of tricarboxylic acid cycle mutants of Bacillus subtilis.
    Yousten AA; Hanson RS
    J Bacteriol; 1972 Feb; 109(2):886-94. PubMed ID: 4110146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Bioprocess parameters and oxygen transfer characteristics in beta-lactamase production by Bacillus species.
    Celik E; Calik P
    Biotechnol Prog; 2004; 20(2):491-9. PubMed ID: 15058994
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Energetics of Bacillus stearothermophilus growth: molar growth yield and temperature effects on growth efficiency.
    Coultate TP; Sundaram TK
    J Bacteriol; 1975 Jan; 121(1):55-64. PubMed ID: 1116992
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Studies on variants of Bacillus stearothermophilus strain NCA 1518.
    Humbert RD; DeGuzman A; Fields ML
    Appl Microbiol; 1972 Apr; 23(4):693-8. PubMed ID: 4553138
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Growth of Escherichia coli on short-chain fatty acids: nature of the uptake system.
    Salanitro JP; Wegener WS
    J Bacteriol; 1971 Nov; 108(2):893-901. PubMed ID: 4942769
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characteristics of the constituent substrains of Bacillus popilliae growing in batch and continuous cultures.
    Sharpe ES; Bulla LA
    Appl Environ Microbiol; 1978 Mar; 35(3):601-9. PubMed ID: 345972
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Alteration of fermentation products from butyrate to acetate by nitrate reduction in Clostridium perfringens.
    Ishimoto M; Umeyama M; Chiba S
    Z Allg Mikrobiol; 1974; 14(2):115-21. PubMed ID: 4365497
    [No Abstract]   [Full Text] [Related]  

  • 39. Curing of a sporulation mutant and antibiotic activity of Bacillus subtilis.
    Schmitt R; Freese E
    J Bacteriol; 1968 Oct; 96(4):1255-65. PubMed ID: 4971886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial metabolism of 4-chloro-2-methylphenoxyacetate. Formation of glyoxylate by side-chain cleavage.
    Gamar Y; Gaunt JK
    Biochem J; 1971 May; 122(4):527-31. PubMed ID: 5123886
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.