These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 513967)

  • 1. The influence of glutathione oxidation on renal cortex taurine transport.
    Chesney RW; Jax DK
    Life Sci; 1979 Oct; 25(17):1497-1506. PubMed ID: 513967
    [No Abstract]   [Full Text] [Related]  

  • 2. Inhibition of beta-amino acid transport by diamide does not involve the brush border membrane surface.
    Chesney RW; Gusowski N; Albright P
    Pediatr Pharmacol (New York); 1985; 5(1):63-72. PubMed ID: 3991254
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of glutathione in renal cortical tissue. Effects of diamide on Na+ and GSSG levels, amino acid transport and Na+-K+-ATPase activity.
    Pillon DJ; Moree L; Rocha H; Pashley DH; Mendicino J; Leibach FH
    Mol Cell Biochem; 1977 Dec; 18(2-3):109-15. PubMed ID: 146823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of diamide on amino acid transport by rat renal cortex slices.
    Reynolds R; Rea C; McNamara PD; Segal S
    Biochim Biophys Acta; 1979 Nov; 557(2):449-59. PubMed ID: 497193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developmental and diamide-induced differences in rat renal cortical glutathione levels.
    Roth KS; Serabian MA; Rea C; Segal S
    Proc Soc Exp Biol Med; 1980 Jan; 163(1):91-4. PubMed ID: 7352150
    [No Abstract]   [Full Text] [Related]  

  • 6. Glutathione-dependent inactivation of sodium-dependent phosphate transport across rat renal brush-border membrane.
    Suzuki M; Iwamoto T; Kawaguchi Y; Iriyama K; Ogawa A; Miyahara T
    Pflugers Arch; 1989 Feb; 413(4):329-35. PubMed ID: 2928083
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Heterogeneity of the beta-amino-preferring transport system in rat kidney cortex. Differential influence of glutathione oxidation.
    Chesney RW; Jax DK
    Biochim Biophys Acta; 1977 Apr; 466(1):84-96. PubMed ID: 851533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The reversible inhibition of gluconeogenesis in kidney cortex by diazenedicarboxylic acid bis (N,N-dimethylamide).
    Pillion D; Leibach FH; Rocha H; Von Tersch FJ; Mendicino J
    Eur J Biochem; 1977 Sep; 79(1):73-83. PubMed ID: 21091
    [No Abstract]   [Full Text] [Related]  

  • 9. Inhibition of amino acid accumulation in slices of rat kidney cortex by diamide.
    Hewitt J; Pillion D; Leibach FH
    Biochim Biophys Acta; 1974 Sep; 363(2):267-76. PubMed ID: 4418150
    [No Abstract]   [Full Text] [Related]  

  • 10. The effects of diazene dicarboxylic acid bis-(N, N-dimethylamide) on glycine uptake by newborn renal cortex.
    Roth KS; Serabian MA; Rea C; Segal S
    Pediatr Pharmacol (New York); 1980; 1(2):161-9. PubMed ID: 7346738
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of diamide and glutathione on the uptake of alpha-methyl-D-glucoside by slices of rat kidney cortex.
    Pillion DJ; Leibach FH
    Biochim Biophys Acta; 1975 Mar; 382(2):246-52. PubMed ID: 1120158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects in adipocytes of diamide on GSH levels, glucose uptake and cell integrity.
    Goldstein BJ; Livingston JN
    Biochim Biophys Acta; 1978 Oct; 513(1):99-105. PubMed ID: 718890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of diamide on proton translocation by the mitochondrial H+-ATPase.
    Zanotti F; Guerrieri F; Scarfò R; Berden J; Papa S
    Biochem Biophys Res Commun; 1985 Nov; 132(3):985-90. PubMed ID: 2866768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of diamide (azodicarboxylic acid-bis-dimethylamide) on sulfhydryl group content, proteins, and the location of phosphatidylethanolamine in human blood platelets.
    Ostermann G; Spangenberg P; Meyer M; Herrmann FH; Till U
    Acta Haematol; 1982; 68(4):278-84. PubMed ID: 6217711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein mixed-disulfides in cardiac cells. S-thiolation of soluble proteins in response to diamide.
    Grimm LM; Collison MW; Fisher RA; Thomas JA
    Biochim Biophys Acta; 1985 Jan; 844(1):50-4. PubMed ID: 3967051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoglycaemic, antioxidative and nephroprotective effects of taurine in alloxan diabetic rabbits.
    Winiarska K; Szymanski K; Gorniak P; Dudziak M; Bryla J
    Biochimie; 2009 Feb; 91(2):261-70. PubMed ID: 18957317
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Lens fiber damage induced by diamide and its recovery by dithiothreitol (author's transl)].
    Teshima R; Taura T; Murata T
    Nippon Ganka Gakkai Zasshi; 1982; 86(5):525-30. PubMed ID: 6981302
    [No Abstract]   [Full Text] [Related]  

  • 18. Inhibition of protein secretion and protein kinase activity in the locust fat body by diamide (azodicarboxylic acid-bis-dimethylamide).
    Harry P; Pines M; Applebaum SW
    Arch Biochem Biophys; 1978 Nov; 191(1):325-30. PubMed ID: 736570
    [No Abstract]   [Full Text] [Related]  

  • 19. [Formation of mixed disulfides of glutathione and protein under the action of diamide].
    Gerasimov AM; Uvarov VIu
    Dokl Akad Nauk SSSR; 1978; 240(2):467-70. PubMed ID: 207499
    [No Abstract]   [Full Text] [Related]  

  • 20. Diamide induced shift in protein and glutathione thiol: disulfide status delays DNA rejoining after X-irradiation of human cancer cells.
    Baker MA; Hagner BA
    Biochim Biophys Acta; 1990 Jan; 1037(1):39-47. PubMed ID: 2294969
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.