These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 5141136)

  • 1. Investigations on the existence of a specific retention of D-glucose by the human erythrocyte membrane.
    Moller JV
    Biochim Biophys Acta; 1971 Oct; 249(1):96-100. PubMed ID: 5141136
    [No Abstract]   [Full Text] [Related]  

  • 2. Preferential uptake of D-glucose by isolated human erythrocyte membranes.
    Kahlenberg A; Urman B; Dolansky D
    Biochemistry; 1971 Aug; 10(16):3154-62. PubMed ID: 5126931
    [No Abstract]   [Full Text] [Related]  

  • 3. Effect of phloretin on monosaccharide transport in erythrocyte ghosts.
    Benes I; Kolínská J; Kotyk A
    J Membr Biol; 1972; 8(3):303-9. PubMed ID: 5084118
    [No Abstract]   [Full Text] [Related]  

  • 4. Structural requirements of D-glucose for its binding to isolated human erythrocyte membranes.
    Kahlenberg A; Dolansky D
    Can J Biochem; 1972 Jun; 50(6):638-43. PubMed ID: 5042872
    [No Abstract]   [Full Text] [Related]  

  • 5. The role of unstirred layers in control of sugar movements across red cell membranes.
    Naftalin RJ
    Biochim Biophys Acta; 1971 Jun; 233(3):635-43. PubMed ID: 5113922
    [No Abstract]   [Full Text] [Related]  

  • 6. Sulfhydryl reagents and lecithin binding to butanol-extracted membranes.
    Green FA
    Chem Phys Lipids; 1973 May; 10(4):309-17. PubMed ID: 4741208
    [No Abstract]   [Full Text] [Related]  

  • 7. An alternative to the carrier model for sugar transport across red cell membranes.
    Naftalin RJ
    Biomembranes; 1972; 3():117-26. PubMed ID: 4666509
    [No Abstract]   [Full Text] [Related]  

  • 8. Glucose transport in white erythrocyte ghosts and membrane-derived vesicles.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):422-8. PubMed ID: 4719139
    [No Abstract]   [Full Text] [Related]  

  • 9. Failure of equilibrium dialysis to show selective monosaccharide binding by erythrocyte membranes.
    Masiak SJ; LeFevre PG
    J Membr Biol; 1972; 9(3):291-6. PubMed ID: 5085304
    [No Abstract]   [Full Text] [Related]  

  • 10. Anomalous transport kinetics and the glucose carrier hypothesis.
    Regen DM; Tarpley HL
    Biochim Biophys Acta; 1974 Mar; 339(2):218-33. PubMed ID: 4827852
    [No Abstract]   [Full Text] [Related]  

  • 11. Glucose transport in fat cell membranes.
    Illiano G; Cuatrecasas P
    J Biol Chem; 1971 Apr; 246(8):2472-9. PubMed ID: 5553405
    [No Abstract]   [Full Text] [Related]  

  • 12. Phloretin keto-enol tautomerism and inhibition of glucose transport in human erythrocytes (including effects of phloretin on anion transport).
    Fuhrmann GF; Dernedde S; Frenking G
    Biochim Biophys Acta; 1992 Sep; 1110(1):105-11. PubMed ID: 1390829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for measuring glucose translocation through biological membranes and its application to human erythrocyte ghosts.
    Taverna RD; Langdon RG
    Biochim Biophys Acta; 1973 Mar; 298(2):412-21. PubMed ID: 4719138
    [No Abstract]   [Full Text] [Related]  

  • 14. Glucose transport carrier activities in extensively washed human red cell ghosts.
    Jung CY; Carlson LM; Whaley DA
    Biochim Biophys Acta; 1971 Aug; 241(2):613-27. PubMed ID: 5159799
    [No Abstract]   [Full Text] [Related]  

  • 15. Glucose transport by trypsin-treated red blood cell ghosts.
    Carter JR; Avruch J; Martin DB
    Biochim Biophys Acta; 1973 Jan; 291(2):506-18. PubMed ID: 4690863
    [No Abstract]   [Full Text] [Related]  

  • 16. A simple resolution of the kinetic anomaly in the exchange of different sugars across the membrane of the human red blood cell.
    Eilam Y; Stein WD
    Biochim Biophys Acta; 1972 Apr; 266(1):161-73. PubMed ID: 5041086
    [No Abstract]   [Full Text] [Related]  

  • 17. Membrane transport of sugars in the rat lens.
    Elbrink J; Bihler I
    Can J Ophthalmol; 1972 Jan; 7(1):96-101. PubMed ID: 5057954
    [No Abstract]   [Full Text] [Related]  

  • 18. Effects of phlorizin on net chloride movements across the valinomycin-treated erythrocyte membrane.
    Kaplan JH; Passow H
    J Membr Biol; 1974; 19(1):179-94. PubMed ID: 4431040
    [No Abstract]   [Full Text] [Related]  

  • 19. Techniques for analysis of glucose binding by human erythrocyte membranes.
    Levine M; Stein WD
    Biochim Biophys Acta; 1967 Sep; 135(4):710-6. PubMed ID: 4292718
    [No Abstract]   [Full Text] [Related]  

  • 20. Human erythrocyte sugar transport. Kinetic evidence for an asymmetric carrier.
    Bloch R
    J Biol Chem; 1974 Jun; 249(11):3543-50. PubMed ID: 4831229
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.