These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Gingell R; Bridges JW; Williams RT Xenobiotica; 1971 Mar; 1(2):143-56. PubMed ID: 5173017 [No Abstract] [Full Text] [Related]
4. Gut flora and the metabolism of prontosils in the rat. Gingell R; Bridges JW; Williams RT Biochem J; 1969 Aug; 114(1):5P-6P. PubMed ID: 5810066 [No Abstract] [Full Text] [Related]
5. Metabolism of 3-H-L-dopa by the rat gut in vivo-evidence for glucuronide conjugation. Landsberg L; Berardino MB; Silva P Biochem Pharmacol; 1975 Jun; 24(11-12):1167-74. PubMed ID: 1137604 [No Abstract] [Full Text] [Related]
7. Naphthol metabolism: glucuronide conjugation and transport by the rat intestine in vitro. Pekas JC Toxicol Appl Pharmacol; 1974 Sep; 29(3):404-19. PubMed ID: 4283704 [No Abstract] [Full Text] [Related]
8. Alterations of the intestinal microflora by diet, oral antibiotics, and Lactobacillus: decreased production of free amines from aromatic nitro compounds, azo dyes, and glucuronides. Goldin BR; Gorbach SL J Natl Cancer Inst; 1984 Sep; 73(3):689-95. PubMed ID: 6433097 [TBL] [Abstract][Full Text] [Related]
9. Metabolism of zearalenone by sow intestinal mucosa in vitro. Olsen M; Pettersson H; Sandholm K; Visconti A; Kiessling KH Food Chem Toxicol; 1987 Sep; 25(9):681-3. PubMed ID: 2958396 [TBL] [Abstract][Full Text] [Related]
10. Glutarimide antibiotics and drug metabolism in the rat. Miller HH; Jondorf WR J Pharm Pharmacol; 1973 Apr; 25(4):337-8. PubMed ID: 4146689 [No Abstract] [Full Text] [Related]
11. Bacterial azo reduction: a metabolic reaction in mammals. Ryan AJ; Roxon JJ; Sivayavirojana A Nature; 1968 Aug; 219(5156):854-5. PubMed ID: 4876937 [No Abstract] [Full Text] [Related]
12. 1-Amino-2-naphthyl glucuronide, a metabolite of 2,5-dimethoxyphenylazo-2-naphthol and 1-xylylazo-2-naphthol. RADOMSKI JL J Pharmacol Exp Ther; 1962 Jun; 136():378-85. PubMed ID: 14489781 [No Abstract] [Full Text] [Related]
13. Enhanced glucuronide formation in different tissues following drug administration. Hänninen O; Aitio A Biochem Pharmacol; 1968 Nov; 17(11):2307-11. PubMed ID: 4388430 [No Abstract] [Full Text] [Related]
14. Extent and implications of interspecies differences in the intestinal hydrolysis of certain glucuronide conjugates. Kenyon EM; Calabrese EJ Xenobiotica; 1993 Apr; 23(4):373-81. PubMed ID: 8337895 [TBL] [Abstract][Full Text] [Related]
15. All-trans-retinoic acid and its glucuronide are the major metabolites of 13-cis-retinoic acid in target tissues. Nutr Rev; 1984 Sep; 42(9):325-6. PubMed ID: 6594600 [No Abstract] [Full Text] [Related]
16. Slow elimination of nonylphenol from rat intestine. Daidoji T; Ozawa M; Sakamoto H; Sako T; Inoue H; Kurihara R; Hashimoto S; Yokota H Drug Metab Dispos; 2006 Jan; 34(1):184-90. PubMed ID: 16243956 [TBL] [Abstract][Full Text] [Related]
17. The metabolism or (35S)homosulphanilamide. Wong LC; Millburn P; Williams RT Biochem J; 1971 Sep; 124(2):17P. PubMed ID: 5158478 [No Abstract] [Full Text] [Related]
18. [Influence of the enterohepatic circulation on the metabolism of chlorphenesin carbamate (CPC). II. Metabolic fate of biliary CPC-glucuronide (author's transl)]. Nozu T; Suwa T; Fukushima K; Aihara H; Tanaka I Yakugaku Zasshi; 1977 Nov; 97(11):1195-200. PubMed ID: 616818 [No Abstract] [Full Text] [Related]
19. The role of the gut in the metabolism of strong analgesics. Rance MJ; Shillingford JS Biochem Pharmacol; 1976 Mar; 25(6):735-41. PubMed ID: 1275955 [No Abstract] [Full Text] [Related]
20. Intestinal drug absorption and metabolism. I. Comparison of methods and models to study physiological factors of in vitro and in vivo intestinal absorption. Barr WH; Riegelman S J Pharm Sci; 1970 Feb; 59(2):154-63. PubMed ID: 5411337 [No Abstract] [Full Text] [Related] [Next] [New Search]