These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 5148581)
1. Discrimination of edge orientation by frogs. Ingle DJ Vision Res; 1971 Nov; 11(11):1365-7. PubMed ID: 5148581 [No Abstract] [Full Text] [Related]
2. Visual discrimination and spatial localization deficits after lesions of the tectofugal pathway in pigeons. Jarvis CD Brain Behav Evol; 1974; 9(3):195-228. PubMed ID: 4607343 [No Abstract] [Full Text] [Related]
3. Visual intensity and pattern discrimination deficits after lesions of the optic lobe in pigeons. Hodos W; Karten HJ Brain Behav Evol; 1974; 9(3):165-94. PubMed ID: 4607344 [No Abstract] [Full Text] [Related]
4. [Neurophysiology of motion perception. Motion-sensitive and direction-specific neurons in the visual system]. Grusser OJ; Grusser-Cornehls U Ergeb Physiol; 1969; 61():178-265. PubMed ID: 4903415 [No Abstract] [Full Text] [Related]
5. Motion detection by interneurons of optic lobes and brain of the flies Calliphora phaenicia and Musca domestica. Bishop LG; Keehn DG; McCann GD J Neurophysiol; 1968 Jul; 31(4):509-25. PubMed ID: 5709868 [No Abstract] [Full Text] [Related]
6. The process of 'taking-into-account' in visual perception. Epstein W Perception; 1973; 2(3):267-85. PubMed ID: 4794124 [No Abstract] [Full Text] [Related]
8. The effect of visual deprivation on perceptual behavior. Ganz L; Fitch M Exp Neurol; 1968 Dec; 22(4):638-60. PubMed ID: 5709811 [No Abstract] [Full Text] [Related]
9. [Functional properties and localization of visual cells of the optic tectum in pigeons]. Jassik-Gerschenfeld D; Guichard J J Physiol (Paris); 1971; 63(6):239A. PubMed ID: 5152262 [No Abstract] [Full Text] [Related]
10. Fundamental properties of intensity, form, and motion perception in the visual nervous systems of Calliphora phaenicia and Musca domestica. McCann GD; Dill JC J Gen Physiol; 1969 Apr; 53(4):385-413. PubMed ID: 5778316 [TBL] [Abstract][Full Text] [Related]
11. Visual discrimination learning in normal and tectal-ablated nurse sharks (Ginglymostoma cirratum). Graeber RC; Ebbesson SO Comp Biochem Physiol A Comp Physiol; 1972 May; 42(1):131-9. PubMed ID: 4402702 [No Abstract] [Full Text] [Related]
12. Flux, wavelength and movement discrimination in frogs: forebrain and midbrain contributions. Kicliter E Brain Behav Evol; 1973; 8(5):340-65. PubMed ID: 4545303 [No Abstract] [Full Text] [Related]
13. Common circuit design in fly and mammalian motion vision. Borst A; Helmstaedter M Nat Neurosci; 2015 Aug; 18(8):1067-76. PubMed ID: 26120965 [TBL] [Abstract][Full Text] [Related]
14. Studies on visual perception of locomotion. Johansson G Perception; 1977; 6(4):365-76. PubMed ID: 917725 [TBL] [Abstract][Full Text] [Related]
15. Activity of movement sensitive neurons of the cat's tectum opticum during spontaneous eye movements. Straschill M; Hoffmann KP Exp Brain Res; 1970; 11(3):318-26. PubMed ID: 5476366 [No Abstract] [Full Text] [Related]
16. [Neuronal reactions in the optic tectum of the cat from moving and stationary light stimulation]. Straschill M; Taghavy A Exp Brain Res; 1967; 3(4):353-67. PubMed ID: 6031166 [No Abstract] [Full Text] [Related]
17. Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Morante J; Desplan C Semin Cell Dev Biol; 2004 Feb; 15(1):137-43. PubMed ID: 15036216 [TBL] [Abstract][Full Text] [Related]
18. The tectal commissure and interocular transfer of pattern discrimination in cichlid fish. Mark RF Exp Neurol; 1966 Oct; 16(2):215-25. PubMed ID: 5922936 [No Abstract] [Full Text] [Related]
19. Nonlinear identification theory models for successive stages of visual nervous systems of flies. McCann GD J Neurophysiol; 1974 Sep; 37(5):869-95. PubMed ID: 4414838 [No Abstract] [Full Text] [Related]
20. Neuronal specificity revisited. Hunt RK; Jacobson M Curr Top Dev Biol; 1974; 8():203-59. PubMed ID: 4596579 [No Abstract] [Full Text] [Related] [Next] [New Search]