These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 5153457)

  • 1. Cerebral blood flow autoregulation at high arterial pressures and different levels of carbon dioxide tension in dogs.
    Ekström-Jodal B; Häggendal E; Linder LE; Nilsson NJ
    Eur Neurol; 1971-1972; 6(1):6-10. PubMed ID: 5153457
    [No Abstract]   [Full Text] [Related]  

  • 2. The pressure-flow relations of the canine brain in acute mechanically induced arterial hypertension at different levels of cerebral blood flow.
    Ekström-Jodal B; Häggendal E; Linder LE; Nilsson NJ
    Acta Anaesthesiol Scand; 1977; 21(3):232-9. PubMed ID: 17992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Autoregulation of cerebral blood flow: influence of the arterial blood pressure on the blood flow through the cerebral cortex.
    Harper AM
    J Neurol Neurosurg Psychiatry; 1966 Oct; 29(5):398-403. PubMed ID: 5926462
    [No Abstract]   [Full Text] [Related]  

  • 4. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial blood pressures.
    Harper AM; Glass HI
    J Neurol Neurosurg Psychiatry; 1965 Oct; 28(5):449-52. PubMed ID: 5838479
    [No Abstract]   [Full Text] [Related]  

  • 5. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension.
    Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB
    Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regional cerebrovascular reactivity to carbon dioxide during cardiopulmonary bypass in patients with cerebrovascular disease.
    Gravlee GP; Roy RC; Stump DA; Hudspeth AS; Rogers AT; Prough DS
    J Thorac Cardiovasc Surg; 1990 Jun; 99(6):1022-9. PubMed ID: 2113599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic mechanisms in autoregulation of cerebral blood flow.
    Fujishima M; Busto R; Scheinberg P; Reinmuth OM
    Neurology; 1970 Apr; 20(4):374. PubMed ID: 5534974
    [No Abstract]   [Full Text] [Related]  

  • 8. [The relationship between changes in arterial blood carbon dioxide tension and the effect of noradrenaline on regional cerebral circulation under normo- and hypotensive conditions].
    Gabrielian ES; Garper AM
    Farmakol Toksikol; 1973; 36(3):285-91. PubMed ID: 4788484
    [No Abstract]   [Full Text] [Related]  

  • 9. K+ATP channels and adenosine are not necessary for coronary autoregulation.
    Stepp DW; Kroll K; Feigl EO
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1299-308. PubMed ID: 9321819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cerebral venous outflow and arterial microsphere flow with elevated venous pressure.
    Wagner EM; Traystman RJ
    Am J Physiol; 1983 Apr; 244(4):H505-12. PubMed ID: 6404180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Autoregulation of cerebral blood flow in the newborn dog.
    Hernández MJ; Brennan RW; Bowman GS
    Brain Res; 1980 Feb; 184(1):199-202. PubMed ID: 7357418
    [No Abstract]   [Full Text] [Related]  

  • 12. Studies on the cerebral circulation of the baboon in acutely induced hypertension.
    Strandgaard S; MacKenzie ET; Jones JV; Harper AM
    Stroke; 1976; 7(3):287-90. PubMed ID: 818748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chronic nonpulsatile blood flow. I. Cerebral autoregulation in chronic nonpulsatile biventricular bypass: carotid blood flow response to hypercapnia.
    Tominaga R; Smith WA; Massiello A; Harasaki H; Golding LA
    J Thorac Cardiovasc Surg; 1994 Nov; 108(5):907-12. PubMed ID: 7967674
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Studies on the autoregulation of cerebrovascular circulation. I. Acute pressure-induced changes of the cerebral vascular resistance in normo- and hypercapnia].
    Held K; Symon L; Dorsch NW
    Z Kardiol; 1973 Jan; 62(1):59-74. PubMed ID: 4197060
    [No Abstract]   [Full Text] [Related]  

  • 15. Effect of CO2 on cerebrovascular autoregulation in hyperthermic dogs.
    Poorvin DW; Frankel HM
    Am J Physiol; 1974 Mar; 226(3):670-4. PubMed ID: 4817420
    [No Abstract]   [Full Text] [Related]  

  • 16. Carbon dioxide--a complex gas in a complex circulation: its effects on systemic hemodynamics and oxygen transport, cerebral, and splanchnic circulation in neonates after the Norwood procedure.
    Li J; Zhang G; Holtby H; Bissonnette B; Wang G; Redington AN; Van Arsdell GS
    J Thorac Cardiovasc Surg; 2008 Nov; 136(5):1207-14. PubMed ID: 19026805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of autoregulation during arterial and cerebral hypoxia.
    Häggendal E
    Scand J Clin Lab Invest Suppl; 1968; 102():V:D. PubMed ID: 5707559
    [No Abstract]   [Full Text] [Related]  

  • 18. On the relation between blood pressure and blood flow in the canine brain with particular regard to the mechanism responsible for cerebral blood flow autoregulation.
    Ekström-Jodal B
    Acta Physiol Scand Suppl; 1970; 350():1-61. PubMed ID: 5280807
    [No Abstract]   [Full Text] [Related]  

  • 19. Hyperventilation restores autoregulation of cerebral blood flow in postictal piglets.
    Monin P; Stonestreet BS; Oh W
    Pediatr Res; 1991 Sep; 30(3):294-8. PubMed ID: 1945571
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of jugular venous pressure on cerebral autoregulation in dogs.
    McPherson RW; Koehler RC; Traystman RJ
    Am J Physiol; 1988 Dec; 255(6 Pt 2):H1516-24. PubMed ID: 3144187
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.