BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 5153977)

  • 21. [Rhizosphere strain of Pseudomonas chlororaphis capable of degrading naphthalene in the presence of cobalt/nickel].
    Siunova TV; Anokhina TO; Mashukova AV; Kochetkov VV; Borodin AM
    Mikrobiologiia; 2007; 76(2):212-8. PubMed ID: 17583218
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community.
    Gomes NC; Kosheleva IA; Abraham WR; Smalla K
    FEMS Microbiol Ecol; 2005 Sep; 54(1):21-33. PubMed ID: 16329969
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Oxidative metabolism of polycyclic hydrocarbons by soil Pseudomonads.
    FERNLEY HN; EVANS WC
    Nature; 1958 Aug; 182(4632):373-5. PubMed ID: 13577843
    [No Abstract]   [Full Text] [Related]  

  • 24. [Biochemical and genetic studies on decomposition aromatic compounds by Pseudomonas].
    Nakazawa A
    Nihon Saikingaku Zasshi; 1976 Mar; 31(2):285-99. PubMed ID: 787576
    [No Abstract]   [Full Text] [Related]  

  • 25. [Microbiological method of preparing 2,6-naphthalene dicarboxylic acid in co-oxidative conditions].
    Shriabin GK; Starovoĭtov II; Golovleva LA
    Dokl Akad Nauk SSSR; 1972 Feb; 202(4):973-4. PubMed ID: 5011466
    [No Abstract]   [Full Text] [Related]  

  • 26. A decalin-consuming bacterial community.
    Vitale AA; Viale AA
    Rev Argent Microbiol; 1994; 26(1):28-35. PubMed ID: 7938498
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Oxidative metabolism of naphthalene by soil pseudomonads. The ring-fission mechanism.
    Davies JI; Evans WC
    Biochem J; 1964 May; 91(2):251-61. PubMed ID: 5838388
    [No Abstract]   [Full Text] [Related]  

  • 28. [The construction and monitoring of genetically marked, plasmid-containing, naphthalene-degrading strains in soil].
    Filonov AE; Akhmetov LI; Puntus IF; Esikova TZ; Gafarov AB; Izmalkova TIu; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(4):526-32. PubMed ID: 16211857
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Bacterial oxidation of naphthalene and phenanthrene.
    Barnsley EA
    J Bacteriol; 1983 Feb; 153(2):1069-71. PubMed ID: 6822474
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial oxidation of naphthalene. I. Factors concerning salicylate accumulation.
    KLAUSMEIER RE; STRAWINSKI RJ
    J Bacteriol; 1957 Apr; 73(4):461-4. PubMed ID: 13428675
    [No Abstract]   [Full Text] [Related]  

  • 31. Characterization in Pseudomonas putida Cg1 of nahR and its role in bacterial survival in soil.
    Park W; Madsen EL
    Appl Microbiol Biotechnol; 2004 Dec; 66(2):209-16. PubMed ID: 15278309
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components.
    Kuiper I; Kravchenko LV; Bloemberg GV; Lugtenberg BJ
    Mol Plant Microbe Interact; 2002 Jul; 15(7):734-41. PubMed ID: 12118890
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Growth of bacteria degrading naphthalene and salicylate at low temperatures].
    Grishchenkov VG; Shishmakov DA; Kosheleva IA; Boronin AM
    Prikl Biokhim Mikrobiol; 2003; 39(3):322-8. PubMed ID: 12754831
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physical state in which naphthalene and bibenzyl are utilized by bacteria.
    Wodzinski RS; Bertolini D
    Appl Microbiol; 1972 Jun; 23(6):1077-81. PubMed ID: 4557558
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [A new soil microorganism, oxidating manganese].
    Khak-Mun T
    Dokl Akad Nauk SSSR; 1969; 188(3):697-9. PubMed ID: 5383643
    [No Abstract]   [Full Text] [Related]  

  • 36. The effect of oxygen on chemotaxis to naphthalene by Pseudomonas putida G7.
    Law AM; Aitken MD
    Biotechnol Bioeng; 2006 Feb; 93(3):457-64. PubMed ID: 16224793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Diversity of genetic systems responsible for biodegradation of naphthalene in Pseudomonas fluorescens strains].
    Izmalkova TIu; Sazonova OI; Sokolov SL; Kosheleva IA; Boronin AM
    Mikrobiologiia; 2005; 74(1):70-8. PubMed ID: 15835781
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel biotransformation of 2-formyl-6-naphthoic acid to 2,6-naphthalene dicarboxylic acid by Pseudomonas sp. for the purification of crude 2,6-naphthalene dicarboxylic acid.
    Kim DS; Kim SK; Choi YB; Kwon IH; Park KH
    Biotechnol Lett; 2008 Feb; 30(2):329-33. PubMed ID: 17914607
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Survival of naphthalene-degrading Pseudomonas putida NCIB 9816-4 in naphthalene-amended soils: toxicity of naphthalene and its metabolites.
    Park W; Jeon CO; Cadillo H; DeRito C; Madsen EL
    Appl Microbiol Biotechnol; 2004 Apr; 64(3):429-35. PubMed ID: 12928756
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bacterial endophyte-mediated naphthalene phytoprotection and phytoremediation.
    Germaine KJ; Keogh E; Ryan D; Dowling DN
    FEMS Microbiol Lett; 2009 Jun; 296(2):226-34. PubMed ID: 19459954
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.