These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 5158083)

  • 1. Surface charge behavior of pyrolytic carbon in saline and blood plasma.
    Epstein BD; Dalle-Molle E
    Trans Am Soc Artif Intern Organs; 1971; 17():14-21. PubMed ID: 5158083
    [No Abstract]   [Full Text] [Related]  

  • 2. Implantation studies with some non-metallic prostheses.
    Martin JG; Kaplitt MJ; Afshar A; Chopra PS; Srinivasan S; Sawyer PN
    Trans Am Soc Artif Intern Organs; 1968; 14():78-81. PubMed ID: 5701578
    [No Abstract]   [Full Text] [Related]  

  • 3. Correlations between blood compatibility and heparin adsorptivity for an impermeable isotropic pyrolytic carbon.
    Bokros JC; Gott VL; La Grange LD; Fadall AM; Vos KD; Ramos MD
    J Biomed Mater Res; 1969 Sep; 3(3):497-528. PubMed ID: 5350521
    [No Abstract]   [Full Text] [Related]  

  • 4. [Carbon as a conductor for stimulation electrodes].
    Bolz A; Schaldach M
    Biomed Tech (Berl); 1989; 34 Suppl():66-7. PubMed ID: 2819212
    [No Abstract]   [Full Text] [Related]  

  • 5. Using mesoporous carbon electrodes for brackish water desalination.
    Zou L; Li L; Song H; Morris G
    Water Res; 2008 Apr; 42(8-9):2340-8. PubMed ID: 18222527
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA deposition on carbon electrodes under controlled dc potentials.
    Lin X; Jiang X; Lu L
    Biosens Bioelectron; 2005 Mar; 20(9):1709-17. PubMed ID: 15681185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The importance of zeta potential, ultrastructure, and electrical conductivity to the in vivo performance of polyurethane-carbon black vascular prostheses.
    Taylor BC; Sharp WV; Wright JI; Ewing KL; Wilson CL
    Trans Am Soc Artif Intern Organs; 1971; 17():22-6. PubMed ID: 5158098
    [No Abstract]   [Full Text] [Related]  

  • 8. Exploring the electrocatalytic sites of carbon nanotubes for NADH detection: an edge plane pyrolytic graphite electrode study.
    Banks CE; Compton RG
    Analyst; 2005 Sep; 130(9):1232-9. PubMed ID: 16096667
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of electrochemical surface properties in thrombosis at vascular interfaces: cumulative experience of studies in animals and man.
    Sawyer PN; Srinivasan S
    Bull N Y Acad Med; 1972 Feb; 48(2):235-56. PubMed ID: 4500642
    [No Abstract]   [Full Text] [Related]  

  • 10. [Small-caliber arterial prostheses: influence of porosity].
    Ratto GB; Motta G
    J Chir (Paris); 1983 May; 120(5):337-42. PubMed ID: 6223934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Langmuir monolayer properties of perfluorinated double long-chain salts with divalent counterions of separate electric charge at the air-water interface.
    Matsumoto Y; Nakahara H; Moroi Y; Shibata O
    Langmuir; 2007 Sep; 23(19):9629-40. PubMed ID: 17696455
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of low charge injection densities on corrosion responses of pulsed 316LVM stainless steel electrodes.
    Riedy LW; Walter JS
    IEEE Trans Biomed Eng; 1996 Jun; 43(6):660-3. PubMed ID: 8987272
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrical transport characteristics of surface-conductance-controlled, dielectrophoretically separated single-walled carbon nanotubes.
    Hong S; Jung S; Choi J; Kim Y; Baik S
    Langmuir; 2007 Apr; 23(9):4749-52. PubMed ID: 17397205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basal plane pyrolytic graphite modified electrodes: comparison of carbon nanotubes and graphite powder as electrocatalysts.
    Moore RR; Banks CE; Compton RG
    Anal Chem; 2004 May; 76(10):2677-82. PubMed ID: 15144174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface breakdown dynamics of carbon nanocapsules.
    Kizuka T; Kato R; Miyazawa K
    Nanotechnology; 2009 Mar; 20(10):105205. PubMed ID: 19417515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biofilm formation on pyrolytic carbon heart valves: influence of surface free energy, roughness, and bacterial species.
    Litzler PY; Benard L; Barbier-Frebourg N; Vilain S; Jouenne T; Beucher E; Bunel C; Lemeland JF; Bessou JP
    J Thorac Cardiovasc Surg; 2007 Oct; 134(4):1025-32. PubMed ID: 17903524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An investigation into vascular prosthesis modified with an electron beam.
    Lowkis B; Szymonowicz M; Rutkowski J
    Polim Med; 1997; 27(3-4):19-26. PubMed ID: 9513250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The search for correlation between electrokinetic phenomena and blood thrombus formation on implant materials.
    Milligan HL; Davis J; Edmark KW
    J Biomed Mater Res; 1968 Mar; 2(1):51-79. PubMed ID: 5708009
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of cavitation on pyrolytic carbon in vitro.
    Haubold AD; Ely JL; Chahine GL
    J Heart Valve Dis; 1994 May; 3(3):318-23. PubMed ID: 8087272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cavitation potential of pyrolytic carbon heart valve prostheses: a review and current status.
    Hwang NH
    J Heart Valve Dis; 1998 Mar; 7(2):140-50. PubMed ID: 9587853
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.