These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

53 related articles for article (PubMed ID: 5158380)

  • 1. An increase in p-nitrophenylphosphate hydrolysis by human red cell membranes on lowering ionic strength.
    Cotterrell D; Whittam R
    J Physiol; 1971 Dec; 219(2):22P-23P. PubMed ID: 5158380
    [No Abstract]   [Full Text] [Related]  

  • 2. A comparison of the hydrolysis of p-nitrophenylphosphate and a phosphoprotein intermediate of the sodium pump.
    Cotterrell D
    J Physiol; 1973 Feb; 229(1):35P-36P. PubMed ID: 4689981
    [No Abstract]   [Full Text] [Related]  

  • 3. The uptake and hydrolysis of p-nitrophenyl phosphate by red cells in relation to ATP hydrolysis by the sodium pump.
    Cotterrell D; Whittam R
    J Physiol; 1972 Jun; 223(3):773-802. PubMed ID: 4339904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [18 O-exchange during ATP and n-nitrophenylphosphate hydrolysis by Na, K-ATPase from bovine brain].
    Smirnova IN; Skvortsevich EG; Boldyrev AA; Panteleeva NS
    Biokhimiia; 1977 Nov; 42(11):2035-8. PubMed ID: 145248
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface and intracellular pools of Na,K-ATPase catalytic and immuno-activities in rat exorbital lacrimal gland.
    Bradley ME; Azuma KK; McDonough AA; Mircheff AK; Wood RL
    Exp Eye Res; 1993 Oct; 57(4):403-13. PubMed ID: 8282026
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [The influence of modulators on the membrane digestion process in Siberian sturgeon Acipenser baeri].
    Nevalennyĭ AN; Korostelev SG
    Zh Evol Biokhim Fiziol; 2002; 38(2):185-7. PubMed ID: 12070922
    [No Abstract]   [Full Text] [Related]  

  • 7. Effects of cysteine and potassium on the ATP-dependent retention of sodium ions by erythrocyte membranes.
    Walz FG; Chan PC
    Biochim Biophys Acta; 1967; 135(5):885-93. PubMed ID: 6065683
    [No Abstract]   [Full Text] [Related]  

  • 8. Effect of the ionic strength and prostaglandin E2 on the free Ca2+ concentration and the Ca2+ influx in human red blood cells.
    Kucherenko YV; Weiss E; Bernhardt I
    Bioelectrochemistry; 2004 May; 62(2):127-33. PubMed ID: 15039015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The incorporation of phosphate into ATP associated with ionic gradients across membranes of human red cell ghosts.
    Lant AF; Whittam R
    J Physiol; 1968 Jul; 197(1):66P-67P. PubMed ID: 5675083
    [No Abstract]   [Full Text] [Related]  

  • 10. [Ion channels formed in bilayer lipid membranes by large subunits of Na,K-ATPase and activated by ATP and p-nitrophenylphosphate].
    Mironov GP; Mirzabekov TA; Bocharnikova NI; Mirsalikhova NM; Mironova GD
    Biofizika; 1984; 29(4):688-90. PubMed ID: 6091790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effect of the ionic strength of the medium on the osmotic properties of erythrocytes].
    Smolin IuN; Sarbash VI; Komanov AV; Rymarchuk VI
    Biofizika; 1980; 25(2):343-4. PubMed ID: 7370351
    [No Abstract]   [Full Text] [Related]  

  • 12. Energy and heat production of human erythrocytes in different media.
    de Verdier CH
    Acta Biol Med Ger; 1981; 40(4-5):699-702. PubMed ID: 7315117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Potassium transport in erythrocytes from patients with gentamicin intolerance].
    Toropova FV; Smirnov AIu; Smirnova OI; Marakhova II
    Tsitologiia; 2002; 44(12):1194-8. PubMed ID: 12683330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of ionic strength on cell volume, cell pH and cellular buffer capacity in human red blood cells.
    Dalmark M
    Acta Biol Med Ger; 1981; 40(6):757-63. PubMed ID: 7324706
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mg 2+ -activated ATP hydrolysis and sulfhydryl groups in membranes from human erythrocytes.
    Smith FM; Verpoorte JA
    Can J Biochem; 1970 May; 48(5):604-12. PubMed ID: 5525015
    [No Abstract]   [Full Text] [Related]  

  • 16. Potassium efflux associated with partial or complete reversal of the sodium pump in intact human red cells.
    Glynn IM; Lew VL
    J Physiol; 1969 Jun; 202(2):89P-90P. PubMed ID: 5784319
    [No Abstract]   [Full Text] [Related]  

  • 17. Effects of charged amphiphiles in depolarising solutions on potassium efflux and the osmotic fragility of human erythrocytes.
    Wróbel A
    Bioelectrochemistry; 2008 Aug; 73(2):117-22. PubMed ID: 18486568
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of cell volume on potassium transport in human red cells.
    Poznansky M; Solomon AK
    Biochim Biophys Acta; 1972 Jul; 274(1):111-8. PubMed ID: 5044056
    [No Abstract]   [Full Text] [Related]  

  • 19. A simple-potentiometric method for determination of acid and alkaline phosphatase enzymes in biological fluids and dairy products using a nitrophenylphosphate plastic membrane sensor.
    Hassan SS; Sayour HE; Kamel AH
    Anal Chim Acta; 2009 Apr; 640(1-2):75-81. PubMed ID: 19362623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Steady-state volumes and metabolism-independent osmotic adaptation in mammalian erythrocytes.
    Bogner P; Sipos K; Ludány A; Somogyi B; Miseta A
    Eur Biophys J; 2002 May; 31(2):145-52. PubMed ID: 12012118
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.