These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 5158385)

  • 21. Dorsolateral cervical spinal injury differentially affects forelimb and hindlimb action in rats.
    Muir GD; Webb AA; Kanagal S; Taylor L
    Eur J Neurosci; 2007 Mar; 25(5):1501-10. PubMed ID: 17425576
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Testing the hindlimb-strength hypothesis: non-aerial locomotion by Chiroptera is not constrained by the dimensions of the femur or tibia.
    Riskin DK; Bertram JE; Hermanson JW
    J Exp Biol; 2005 Apr; 208(Pt 7):1309-19. PubMed ID: 15781891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [The skin shrinkage after the excision and its relation to the elastin content of the stratum reticulare inthe bovine foot].
    Wegner W; Osburg G; Warwas W
    Dtsch Tierarztl Wochenschr (1946); 1969 Jul; 76(14):373-7. PubMed ID: 5798857
    [No Abstract]   [Full Text] [Related]  

  • 24. Evolutionary implications of the unusual walking mechanics of the common marmoset (C. jacchus).
    Schmitt D
    Am J Phys Anthropol; 2003 Sep; 122(1):28-37. PubMed ID: 12923902
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bipedal locomotion by the normally quadrupedal Japanese monkey, M. Fuscata: strategies for obstacle clearance and recovery from stumbling.
    Mori F; Tachibana A; Takasu C; Nakajima K; Mori S
    Acta Physiol Pharmacol Bulg; 2001; 26(3):147-50. PubMed ID: 11695527
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A 3D analysis of fore- and hindlimb motion during overground and ladder walking: comparison of control and unloaded rats.
    Canu MH; Garnier C
    Exp Neurol; 2009 Jul; 218(1):98-108. PubMed ID: 19393236
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of foot trajectory in walking toddlers: adaptation to load changes.
    Dominici N; Ivanenko YP; Lacquaniti F
    J Neurophysiol; 2007 Apr; 97(4):2790-801. PubMed ID: 17251371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The differential effects of cervical and thoracic dorsal funiculus lesions in rats.
    Kanagal SG; Muir GD
    Behav Brain Res; 2008 Mar; 187(2):379-86. PubMed ID: 18037173
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ground forces applied by galloping dogs.
    Walter RM; Carrier DR
    J Exp Biol; 2007 Jan; 210(Pt 2):208-16. PubMed ID: 17210958
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The adaptation of limb kinematics to increasing walking speeds in freely moving mice 129/Sv and C57BL/6.
    Serradj N; Jamon M
    Behav Brain Res; 2009 Jul; 201(1):59-65. PubMed ID: 19428617
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of subject velocity on ground reaction force measurements and stance times in clinically normal horses at the walk and trot.
    McLaughlin RM; Gaughan EM; Roush JK; Skaggs CL
    Am J Vet Res; 1996 Jan; 57(1):7-11. PubMed ID: 8720231
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A comparison analysis of hindlimb kinematics during overground and treadmill locomotion in rats.
    Pereira JE; Cabrita AM; Filipe VM; Bulas-Cruz J; Couto PA; Melo-Pinto P; Costa LM; Geuna S; Maurício AC; Varejão AS
    Behav Brain Res; 2006 Sep; 172(2):212-8. PubMed ID: 16777243
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Segment and joint angles of hind limb during bipedal and quadrupedal walking of the bonobo (Pan paniscus).
    D'Août K; Aerts P; De Clercq D; De Meester K; Van Elsacker L
    Am J Phys Anthropol; 2002 Sep; 119(1):37-51. PubMed ID: 12209572
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Data processing of vertical foot-forces for the clinical assessment of pathological gait.
    Miyazaki S; Takeuchi T; Iwakura H; Kubota T
    Tokyo Ika Shika Daigaku Iyo Kizai Kenkyusho Hokoku; 1981; 15():69-83. PubMed ID: 6955911
    [No Abstract]   [Full Text] [Related]  

  • 35. Investigation and characterization of rat bipedal walking models established by a training program.
    Wada N; Toba Y; Iwamoto W; Goto M; Miyata H; Mori F; Morita F
    Brain Res; 2008 Dec; 1243():70-7. PubMed ID: 18835381
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Contribution of cutaneous inputs from the hindpaw to the control of locomotion. II. Spinal cats.
    Bouyer LJ; Rossignol S
    J Neurophysiol; 2003 Dec; 90(6):3640-53. PubMed ID: 12944535
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Treadmill walking and overground walking of human subjects compared by recording sole-floor reaction force.
    Warabi T; Kato M; Kiriyama K; Yoshida T; Kobayashi N
    Neurosci Res; 2005 Nov; 53(3):343-8. PubMed ID: 16182398
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Wing-assisted incline running and the evolution of flight.
    Dial KP
    Science; 2003 Jan; 299(5605):402-4. PubMed ID: 12532020
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of increasing inertia upon vertical ground reaction forces and temporal kinematics during locomotion.
    De Witt JK; Hagan RD; Cromwell RL
    J Exp Biol; 2008 Apr; 211(Pt 7):1087-92. PubMed ID: 18344482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Locomotor kinetics and kinematics on inclines and declines in the gray short-tailed opossum Monodelphis domestica.
    Lammers AR; Earls KD; Biknevicius AR
    J Exp Biol; 2006 Oct; 209(Pt 20):4154-66. PubMed ID: 17023608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.